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Abstract This document presents a concise overview of various mathematical and
numerical problems raised by the simulation of electrocardiograms (ECGs). A
model for the propagation of the electrical activation in the heart and in the torso
is proposed. Some of its mathematical properties are analyzed. This model is not
aimed at reproducing the complex phenomena taking place at the microscopic level.
It has been devised to produce realistic healthy ECGs, and some pathological ones,
with a reasonable level of complexity. It relies on various assumptions that are care-
fully discussed through their impact on the ECGs. The coupling between the heart
and the torso is a critical numerical issue which is addressed. In particular efficient
coupling strategies based on explicit algorithms are presented and analyzed. We also
study the coupling between the myocardium cells and the rapid conduction system
in the heart. Two applications related to the inverse problem in the electrocardiog-
raphy are addressed. The first concerns the optimization of the conductivities inside
the torso cage. The second concerns the study of the conductivity values uncertain-
ties on the constructed heart signals.
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Chapter 1
Introduction

Le cceur est I’'un des organes vitaux du corps humain, son role est de faire circuler
le sang dans tous les tissus de I’organisme. Malgré son petit volume (entre 50 et
60 cm?), il est chargé de pomper 8000 litres de sang par jour. Pour faire circuler
cette grande quantité, il doit battre sans s’arréter plus de 100 000 fois par jour.
Son arrét peut étre fatal. Comme tous les organes du corps humain, il peut étre af-
fecté de nombreuses pathologies. Ces dernieres peuvent étre sans danger, comme
certaines tachycardies par exemple, ou bien s’avérer tres sérieuses, comme les fib-
rillations et les blocs de branches. L’évolution des technologies a permis au médecin
d’observer 1’état du cceur a travers des outils d’imagerie médicale. Ceux-ci peuvent
étre basés sur des ultrasons (echocardiographie), de la résonance magnétique (IRM)
ou des rayons X. Ces technologies sont incontournables pour dresser un diagnostic
du cceur, mais leur utilisation demeure complexe et coliteuse. En 2006, il y avait
seulement 370 IRM installées dans toute la France, le cofit d’un appareil est de 1,5
M d’euros et le colit d’un examen est en moyenne de 315 euros (d’apres Iinstitut
Curie).

L’ électrocardiogramme (ECG) est un outil clinique performant, non invasif, peu
cotiteux et facile a mettre en ceuvre. Il est I’examen le plus couramment utilisé en
électrocardiologie. Les travaux présentés dans ce document concernent la modéli-
sation et la simulation numérique de 1’activité électrique du cceur, en particulier
la modélisation et la simulation numérique des électrocardiogrammes. Nous avons
choisi de nous concentrer sur ’'ECG pour deux raisons. La premiere est la per-
formance de cet outil et son importance aupres des médecins (il s’agit du premier
élément du diagnostic du cceur). La deuxieme raison est que cet outil nous permet
de dialoguer avec les cardiologues, ce qui nous permet d’avoir un retour critique sur
nos résultats de simulation. Il est en effet plus familier pour un médecin d’évaluer
un ECG que la propagation de I’onde électrique dans le myocarde.

La modélisation du vivant est devenue un défi scientifique trés important. Elle
pourrait aider & mieux comprendre les phénomenes physiologiques et apporter des
solutions a des problemes cliniques. En effet, les expériences in vivo ne sont par-
fois pas réalisables & cause de contraintes pratiques ou morales. Avoir un outil
numérique prédictif capable de reproduire le phénomene physiologique fournirait



en quelque sorte un “cobaye virtuel”. Ce cobaye pourrait servir a réaliser des ex-
périences dans le but de résoudre des problemes biomédicaux ou industriels. L’ étude
de ces phénomenes permet aussi de faire évoluer les sciences physique mathéma-
tiques en proposant des nouvelles problématiques et peut en méme temps inciter le
chercheur a trouver des nouvelles méthodes pour résoudre les problémes soulevés.
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Chapter 2
Anatomie cardiaque et électrocardiogramme

1 Le ceeur

Le cceur est un muscle creux formé principalement de fibres enroulés (voir Figure[T)),
une pompe composée de tissu musculaire, qui recueille sans cesse le sang et le
propulse dans les arteres. C’est le seul muscle qui peut se contracter régulierement
sans fatigue, tandis que les autres muscles ont besoin d’une période de repos. 1l se
trouve au milieu de la cage thoracique délimitée par les deux poumons, le sternum
et la colonne vertébrale, il se situe un peu a gauche du centre du thorax au-dessus
du diaphragme.

Fig. 1 Orientation des fibres (d’aprés bembook [MP95]).

Alors que la masse du cceur (350 g) n’excede pas 0,5 % de la masse du corps,
il préleve 10% de la consommation totale d’oxygene; il est alimenté en oxygene
et nutriments par les vaisseaux coronaires, qui forment autour de lui une sorte de
couronne. Le cceur est composé de quatre chambres (deux oreillettes et deux ven-
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Fig. 2 Anatomie du coeur (Source: Encyclopédie Larousse)

tricules), équipées de valves qui empéchent les reflux sanguins. Il pompe le sang
grice a une série de systoles (contractions) et diastoles (relichements) des oreil-
lettes et ventricules. La circulation sanguine étant a sens unique, les valves ont pour
but d’empécher le sang de revenir en arriere: la valve tricuspide sépare 1’oreillette
droite du ventricule droit, la valve mitrale sépare I’oreillette gauche du ventricule
gauche. Les arteres sont séparés des ventricules par les valves sigmoides: le ven-
tricule gauche est séparé de I’artére pulmonaire par les valves pulmonaires et le
ventricule gauche est séparé de I’aorte par les valves aortiques. Par contre il n’existe
pas de séparation entre les veines et les oreillettes.

2 Fonctionnement du ceeur

2.1 Roéle du coeur

Le cceur se contracte trés régulierement et la continuité de ses battements est essen-
tielle a la vie: un arrét de la pulsation cardiaque est I’un des signes les plus évidents
d’un déces. Ces pulsations, qui permettent a du sang frais, oxygéné, d’irriguer les
organes, ne peuvent s’arréter, méme durant une période trés courte: certains or-
ganes peuvent survivre a une bréve interruption des pulsations cardiaques, d’autres
non. C’est le cas du cerveau, qui est extrémement sensible a toute anomalie circu-
latoire: 10 minutes d’interruption de I’irrigation sanguine du cerveau suffisent pour



endommager I’organe de facon irréversible et la mort s’ensuit. Un cceur au repos
se contracte normalement environ 70 fois par minute, période au cours de laque-
lle il chasse 5 litres de sang (le volume sanguin total d’'un Homme). La contrac-
tion du cceur se fait d’'une maniere intrinséque, c’est-a-dire qu’aucune stimulation
d’origine nerveuse n’intervient. Une cellule musculaire cardiaque isolée continue
a battre spontanément et rythmiquement. Ensemble, les cellules musculaires con-
stituent la paroi du cceur ou myocarde. Bien que le coeur génére son propre rythme
contractile (le pouls), celui-ci est régulé par le systeéme nerveux et deux hormones
: L’adrénaline et la noradrénaline, hormones sécrétées par les glandes surrénales
en cas de peur ou de colere, augmentent le rythme des contractions cardiaques; la
noradrénaline est aussi libérée par les fibres nerveuses sympathiques arrivant au
myocarde, I’acétylcholine, substance libérée par les nerfs parasympathiques, agit au
contraire sur le cceur en ralentissant le pouls. Le rythme cardiaque varie de 70 batte-
ments par minutes (au repos) a 180, voire 210 battements par minute lors d’efforts
intenses.

2.2 Les battements cardiaques en électrophysiologie

Les battements cardiaques sont sous le contrdle d’un pacemaker naturel, sorte de
groupement de cellules du myocarde qui constituent le noeud sinusal ou nceud sino-
auriculaire (SA), situé en haut de I’oreillette droite. Le nceud SA donne naissance
a une onde d’excitation tous les 0.8 seconde. Cette onde parcourt, pendant 0.1 sec-
onde, le tissu musculaire des deux oreillettes, qui se contractent d’abord lorsque les
ventricules sont au repos. Cette periode correspond dans I'ECG a la duré de 1’onde
P. Puis I’onde gagne le second nceud, le nceud auriculo-ventriculaire (ou nceud AV)
situé plus bas entre les deux oreillettes, lequel transmet I’onde d’excitation aux
parois des deux ventricules via le faisceau auriculo-ventriculaire (ou le faisceau de
His) puis les fibres de Purkinje. Ces dernieres, en contact direct avec le myocarde,
lui transmettent le courant ce qui entraine la dépolarisation et la contraction des cel-
lules. Cette periode correspond au complexe QRS de ’ECG. Lorsque les ventricules
se contractent, les oreillettes sont au repos. Le bruit du coeur provient de la brusque
fermeture des valves a chaque contraction.

3 La circulation sanguine

L’Homme possede un systeme circulatoire clos: le sang part du cceur en emprun-
tant les arteres puis les artérioles, il traverse le réseau capillaire soit au niveau des
poumons (petite circulation ou circulation pulmonaire), soit au niveau des autres or-
ganes (grande circulation ou circulation systémique), puis il retourne au coeur par
les veinules puis les veines. Les arteres sont des vaisseaux sanguins qui vont du ceeur
vers les organes, les veines ramenant inversement le sang des organes vers le cceur.



LATE LEFT VENTRICULAR
DEPOLARIZATION
250ms YENTRICULAR

REPOLARIZATION

ATRIAL APICAL
DEPOLARIZATION DEPOLARIZATION
80ms 230ms

450 ms

———— T
—— 0 200 400 600 [mg]
0 200 400 600 [ms] 0 200 400 600 [ms]

Fig. 3 Etapes de la progression de la contraction cardiaque et composantes correspondantes d’un
électrocardiogramme (d’aprés Bembook [MP93]).

Dans la grande circulation, les arteres, partant du ventricule gauche, transportent
du sang oxygéné (rouge) et les veines, revenant a 1’oreillette droite, transportent du
sang chargé en dioxyde de carbone (bleu), voir Figure [d Par contre, dans la petite
circulation, les arteres pulmonaires, partant du ventricule droit, transportent du sang
chargé en dioxyde de carbone vers les poumons, et les veines pulmonaires rameénent
a ’oreillette gauche du sang oxygéné.

3.1 Petite circulation

Le myocarde étant dans sa phase de décontraction, la pression sanguine est plus
élevée dans les arteres que dans le cceur en diastole, de sorte que les valves sig-
moides (valves pulmonaire et aortique) sont fermées, entre-temps les oreillettes se
remplissent de sang provenant des veines. Le sang qui vient de 1’oreillette droite
passe, a travers la valve triscupide, dans le ventricule droit. Les contractions du ven-
tricule droit envoient le sang dans 1’artére pulmonaire qui pénétre dans les poumons
et s’y ramifie en capillaires pulmonaires. Ces derniers se rassemblent en veines pul-
monaires qui aboutissent a I’oreillette gauche. Le cycle est ainsi bouclé.
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Fig. 4 Représentation schématique de la petite et la grande circulations sanguines: Les flches
rouges designe le sens de circulation du sang oxygéné et les fleches bleus designe le sens de cir-
culation du sang riche en CO;,. Source: http://www-rocqg.inria.fr/Marc.Thiriet/
Glosr/Bio/AppCircul/Circul.html

Quand la stimulation contractile atteint le myocarde, ceci provoque la contraction
des ventricules: cette systole ferme les valves tricuspide et mitrale. La pression dans
les ventricules devient tellement élevée que les valves sigmoides s’ouvrent: le sang
afflue dans les arteres. En particulier, le sang sortant du ventricule gauche passe a
travers la valve aortique vers 1’aorte. Les organes sont généralement vascularisés par
une artere provenant d’une ramification de 1’aorte. Le sang qui pénetre dans le foie
provient de deux sources: I’artere hépatique apporte du sang oxygéné par la circula-
tion systémique, et la veine porte hépatique apporte du sang carbonaté mais riche en
nutriments, provenant des organes digestifs. Le systeme porte hépatique rassemble
le sang veineux venant de I’estomac (via la veine gastrique), du pancréas (via la
veine pancréatique), de I’intestin (via les veines mésentériques) et aussi de la rate
(via la veine splénique). Le foie contrdle les nutriments ainsi apportés, emmagasine
le glucose (sous forme de glycogene) et filtre certaines substances nocives comme
I’alcool ou la caféine ou la théobromine du cacao. Enfin, le sang quitte le foie par
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la veine sus-hépatique, qui se jette dans la veine cave inférieure. De facon compara-
ble, d’autres veines provenant de membres supérieurs, de la téte et du cou se jettent
semblablement, dans la veine cave supérieure. Les deux veines caves supérieure et
inférieure ramenent le sang vers 1’ oreillette droite.

4 L’électrocardiogramme
4.1 Définition

L’électrocardiogramme est une représentation graphique de 1’activité électrique du
coeur. L’électrocardiographe qui est 1’appareil permettant de faire un ECG, mesure
la différence de potentiel entre différentes positions de la surface du corps. Ce
qui permet d’avoir une description non invasive de 1’état du cceur. Le médecin
peut visualiser ces différences de potentiel sur un écran appelé électrocardioscope.
L’ électrocardiogramme peut aussi étre tracé sur un papier millimétré. Ce papier ap-
pelé “papier pour ECG” est tracé en petits et grands carrés de tailles respectives
Imm et 5Smm (voir Figure. [5). Horizontalement, un petit carreau (respectivement,
un grand carreau) représente 40 ms (respectivement, 200 ms) et verticalement 1 mv
(respectivement, 5 mv). L’électrocardiogramme affiché sur la Figure. [5 représente
la premiere dérivation de ’'ECG d’un cceur en situation normale. Les différentes
fluctuations qu’on regarde sur cet ECG s’appellent, dans 1’ordre de gauche a droite,
lesondes P, Q,R, S, T et U.

L’onde P, représente la dépolarisation auriculaire,

le complexe QRS, représente la dépolarisation des ventricules,

le segment QT, représente le plateau des potentiels d’action ventriculaire,
L’onde T, correspond a la repolarisation des ventricules,

L’onde U, généralement absente, est provoquée par une repolarisation prolongée
des cellules M ou par un facteur mécanique correspondant a la relaxation du
myocarde.

4.2 Cadre historique

L’ECG est un outil médical récent. Son histoire a commencé a la fin du XVIII eme
siecle. Au cour d’un siecle et demi les chercheurs ont trouvé la forme “idéale” de
I’ECG. L’ECG qu’utilisent actuellement les cliniciens date du début du XX eéme
siecle.

Historiquement, la premiere personne qui a remarqué que le muscle bouge quand
il est excité est le médecin et physicien italien Luigi Galvani. Il découvre en 1771
que les muscles d’une grenouille morte bougent lorsqu’elles sont mises en contact
avec des métaux telsque le cuivre et le zinc (voir Figure. [6)). Mais jusqu’a cette date,
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Fig. 5 L’ECG d’un cycle cardiaque normale.

personne ne connait I’origine de 1’onde électrique qui traverse le corps d’un animal.

Ce n’est qu’apres I'invention d’un outil de mesure du signal électrique, “le Gal-
vanométreﬂ ’, que les physiciens et les médecins commencent a relier les battements
cardiaques a un signal électrique. En effet, le physicien italien Carlo Matteucci
[Mat42]], montre en 1842, pour la premiére fois, que chaque contraction du coeur est
accompagnée par un courant électrique. Un an apres, le physiologiste allemand Emil
Dubois Reymond confirme les travaux de Matteucci et décrit un potentiel d’action
accompagnant chaque contraction musculaire. Ce potentiel d’action a été enregistré
pour la premiere fois en 1856 par les chercheurs allemand Rudolph von Koelliker
et Heinrich Muller. Apres I’invention de 1’électrometre capillaireEl par le physicien
frangais Gabriel Lippmann, en 1872, cet appareil a été utilisé par le physiologiste
frangais Etienne-Jules Marey en 1876 pour enregistrer 1’activité électrique
du coeur d’une grenouille. Deux ans plus tard, les physiologistes britanniques John
Burden Sanderson et Frederick Page [[SP76]] enregistrent le courant électrique car-

! Appareil de mesure du signal électrique inventé par Johan Salomo et Christoph Schweigger en
1821.

2 C’est un tube de verre 2 colonne de mercure et d’acide sulfurique.



Fig. 6 Représentation de I’expérience de Galvani, qui lui a permis de découvrir I’électricité ani-
male (gauche). Photo de Luigi Galvani (droite). Source: Wikipedia.

diaque avec I’électrometre capillaire et montrent qu’il est composé de deux phases
(dépolarisation et repolarisation). Ces deux chercheurs publient en 1884 des enreg-
istrements électriques faits sur le cceur d’une grenouille [SP84]. Trois ans apres, le
premier électrocardiogramme humain a été enregistré par le physiologiste britan-
nique Augustus D. Waller de St Mary’s Medical School, a Londres [Wal87]]. II est
enregistré sur Thomas Goswell, un technicien du laboratoire. En 1889, le physiol-
ogiste allemand Willem Einthoven (voir Figure. démontre sa technique au Pre-
mier Congres International de Physiologie. En 1890, G.J. Burch d’Oxford imagine
une correction arithmétique pour les observations de fluctuation de I’électrometre.
Celui-ci permet de voir le vrai tracé de 1’électrocardiogramme [Bur90].

Cinq ans plus tard, Einthoven, utilisant un électrometre amélioré ainsi qu’une
formule de correction développée indépendamment par Burch, met en évidence cinq
déflexions qu’il appelle P, Q, R, S and T [Ein93].

En 1901, Einthoven modifie cet enregistreur pour produire des électrocardio-
grammes. Son appareil pese 300 kg (voir Figure. [7) [EinO1]. L’année qui suit,
Einthoven publie le premier électrocardiogramme enregistré avec cet appareil. 11
publie, en 1906, la premiere classification des électrocardiogrammes normaux et
anormaux: Hypertrophies ventriculaires gauches et droites, hypertrophies auricu-
laires gauches et droites, ondes U, éléments sur le QRS, contractions ventricu-
laires prématurées, bigéminisme ventriculaire, flutter auriculaire et bloc auriculo-
ventriculaire complet [Ein06]. Six ans plus tard, il décrit un triangle équilatéral
formé par les dérivations standards D1, D2, D3, appelé plus tard “triangle d’Einthoven”.
C’est aussi la premiere fois qu’il utilise dans un article I’abréviation anglo-saxonne
de I’électrocardiogramme EKG (ECG). En 1920, Hubert Mann du laboratoire de
cardiologie de I’hopital du Mont Sinai de New York, décrit la dérivation d’un

3 Source: wikipedia.



Fig. 7 Photo de I’électrographe d’Einthoven montrant la technique qu’il a utilisé: Les deux mains
et le pied gauche sont plongés dans des jarres contenant de 1’eau salée. Les trois jarres sont reliées
a I’appareil avec des fils électriques.

“monocardiogramme” plus tard appelé “vectocardiogramme” [Man20]. En 1924,
Willem Einthoven obtient le prix Nobel pour I’invention de 1’électrocardiographe.

L’American Heart Association et The Cardiac Society de Grande Bretagne
définissent, en 1938, les positions standards des dérivations précordiales V1, V2,...,V6
[RPWT38]. Enfin, en 1942, Emanuel Goldberger ajoute aux dérivations frontales
d’Einthoven les dérivations aVR, aVL, aVF. Ceci lui permet, avec les 6 dérivations
précordiales V1,V2,...,V6, de réaliser le premier électrocardiogramme sur 12 déri-
vations, qui est encore utilisé aujourd’hui.






Chapter 3
Modeles mathématiques

On peut distinguer deux échelles de modélisation en électrophysiologie cardiaque.
On trouve d’une part des modeles s’intéressant a I’échelle microscopique, dont le
but est de produire une description fine de ce qui est a I’origine de I’onde électrique
dans les cellules. On trouve d’autre part des modeles a 1’échelle de I’organe, dont
le but est de décrire la propagation de 1’onde électrique dans le cceur et le reste du
corps. Dans ce qui suit, nous proposons de présenter les éléments principaux de ces
deux catégories. Nous avons choisi de nous limiter aux approches basées sur des
équations différentielles et aux dérivées partielles (nous ne présenterons donc pas
de modeles basés sur des automates cellulaires).

1 Modeéle OD: échelle cellulaire

Les cellules (en particulier les cellules cardiaques) sont entourées par une membrane
limitant ’unité cellulaire, cette membrane est percée par des protéines dont le role
est d’assurer le flux des différentes substances intra et extra-cellulaires a travers la
membrane (voir figure[8).

Ces protéines peuvent avoir un comportement passif ou actif selon I’état de la cel-
lule, leur activité permet le passage de certaines substances chimiques a I’intérieur
ou a I’extérieur de la cellule, ce qui provoque la dépolarisation ou la répolarisation
cellulaire. On peut classifier le processus du transport ionique en trois modes de
transfert: les canaux ioniques, les pompes et les échangeurs.

1.1 Les canaux ioniques

Un canal ionique (Figure O gauche) laisse passer dans un sens donné une espece
conformément a son gradient électrochimique. Son comportement est simplement
modélisé par une résistance. Un canal ionique est cependant actif dans la mesure

21
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Fig. 8 Représentation schématique de la membrane cellulaire. Source: www.bio-energetik.
ca/images/cell_membrane. jpg

ol sa conductivité est variable selon les conditions extérieures: en particulier il peut
étre fermé.

La dépolarisation de la cellule est généralement causée par I’ouverture d’un canal
ionique. Ce canal est celui du sodium Na™. Son ouverture se fait dans le sens de son
gradient électrochimique, par conséquent, il ne nécessite aucun apport d’énergie de
la cellule. Ce genre de transport ionique est appelé transport passif. L’ouverture d’un
canal de sodium provoque la création d’un courant ionique iy, de I’ordre du pico-
ampere (pA). Ce courant est proportionnel au gradient électrochimique du sodium
(Vin — Eng) et & une variable qui représente 1’ouverture et la fermeture de ce canal
Gy, Le potentiel transmembranaire Vi, est la différence entre le potentiel intra et
extra-cellulaire. Le potentiel électrochimique Ey, est donné par la loi de Nernst

RT . [Nd.
Eng = —1
Na F n [Na]i ’

ey

ol [Na]. (respectivement [Na];) est la concentration extra-cellulaire (respectivement
intra-cellulaire) de I’ion sodium Na™. Les constantes R, T et F indiquent respective-
ment, la constante de gaz parfait, la temperature et la constante de Faraday.
Le courant iy, d’ions Na™ a travers ce canal, décrit par Hodgkin et Huxley (voir
[HH52])) est donné par
INg = GNa(Vm - ENa)- )

Ce canal ionique n’est pas toujours ouvert. Sa fermeture et son ouverture suivent la
loi de conductivité des portes des canaux ioniques Gy, qui peut étre réprésentée de
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a maniere suivante:
GNa = GNaH 5 (3)

ol Gy, est la conductivité maximale du canal ionique représentant son ouverture
maximale. La fonction H est comprise entre 0 et 1, elle est donnée par,

H:H(Vm7[Nai]a[Nae]“')' 4
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Fig. 9 Représentation schématique des canaux ioniques Na®™, KT et Ca** (gauche) et de
la pompe Na*/K* (droite). Source: http://www.apteronote.com/revue/neurone/
article_79.shtml

é
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Le canal ionique Na™ a été le premier élément de la modélisation de 1’activité
lectrique de la membrane cellulaire. Hodgkin et Huxley ont proposé en 1952 le
remier modele de potentiel d’action. Dans leur article [HH32], ils proposent trois

types de courants membranaires :

Le courant Iy, responsable de la dépolarisation cellulaire. Il est dfi, comme mod-
élisé ci-dessus, a I’ouverture du canal du sodium.

Le courant Ix qui provoque la repolarisation de la cellule est dii a un autre type
de transport ionique: les pompes ioniques (voir[T.2)

Ip, est le courant qui représente le courant provenant des autres types d’especes
chimiques.
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1.2 Les pompes

Contrairement aux canaux ioniques les pompes peuvent faire entrer ou sortir des
especes chimiques dans le sens contraire de leur gradient électrochimique. Ce sont
les protéines (voir Figure[9) qui font cette fonction grace au métabolisme cellulaire,
et plus précisément par les molécules d’ Adénosine Tri Phosphate (ATP).

L’exemple le plus intéressant des pompes est celui de la pompe Na/K. Cette
pompe permet de faire rentrer deux ions potassium K* contre trois ions sodium
Na™t qui sortent en méme temps. Au repos, la cellule est fortement concentrée en
potassium et faiblement concentrée en sodium, pendant la dépolarisation les canaux
ioniques s’ouvrent pour faire entrer le sodium et faire sortir le potassium. Une fois
dépolarisée, la cellule est enrichie en sodium et appauvrie en potassium, 1’activation
de la pompe Na/K permet a la cellule de retrouver ses concentrations initiales en
sodium et en potassium.

Lors de son activation la pompe Na/K crée un courant électrique noté iy, /K-
Ce courant est une fonction du potentiel transmembranaire, des concentrations de
potassium de sodium ainsi que des molécules ATP:

iNa/k = F (Vn, [Ndli e, [K]i e, ATP) &)

Comme ce courant est dii au déplacement de deux ions a travers la membrane on
aura:

iNa/K = INaNa/K + 1K NaJK (6)
avec
iNa,Na/K = 3iNa/K} Ik Najk = —2iNa/K- (7N

1.3 Les échangeurs

Comme I’indiquent leurs noms, les échangeurs permettent de transporter les ions et
de les échanger entre les milieux intra et extra-cellulaires. Le ions sont échangés en
utilisant une énergie provenant du gradient élecrochimique d’un autre type d’ion.
L’existence de ce gradient électrochimique est due a la dépolarisation cellulaire
réalisée par la pompe Na/K. On peut donc considérer que cette énergie est pro-
pre a la cellule. L’exemple typique déchangeur de ce genre de transport ionique est
I’échangeur Nat /Ca®*. Ce transporteur permet aux concentrations des ions Na™ et
Ca** de retrouver leurs conditions initiales.



1.4 Modélisation de la membrane cellulaire cardiaque

1.4.1 Modeles physiologiques

Dix ans apres la publication du modele de Hodgkin et Huxley, en 1962, Noble pro-
pose une modification de ce modele afin de produire le premier modele de I’activité
électrique de la membrane d’une cellule cardiaque. Ce modele a été adapté aux
cellules du réseau de Purkinje et des cellules pacemakers (cellules auto-excitables)
[Nob62al]. La modélisation des cellules ventriculaires a été introduite par Beeler et
Reuter [BR77al], en 1977. En 1985, Di Francesco et Noble [DENS8S]] proposent un
modele qui prend en compte les pompes ioniques, ce qui permet aux différentes es-
peces chimiques telles que le sodium le potassium et le calcium de retrouver leurs
états stables. Ceci qui n’était pas pris en considération dans les modeles précédents
puisqu’ils se basaient sur la modélisation des canaux ioniques.

Ces modeles ont été améliorés par Luo et Rudy une premiere fois en 1991(Luo-
Rudy I [LR91al) et une deuxieme fois en 1994 (Luo-Rudy II [LR94al]). Le développe-
ment de ces modeles continue et I’adaptaion a des conditions spécifiques telles que
le type de la pathologie ou I’espece du sujet étudié est devenue le but des études ré-
centes. Citons a titre d’exemple les travaux de Shaw et Rudy [SR97] qui ont étudié
I’effet d’une ischémie sur la durée du potentiel d’action, les travaux de Zeng et al.
[ZLRRO9S] qui ont développé un modele de cellule ventriculaire d’un cochon. Des
travaux plus récents sont destinés a la modélisation du potentiel d’action des ven-
tricules humains (voir par exemple [TTNNP04a, BOCFO8]).

1.4.2 Modeles phénoménologiques

Les modeles cités ci-dessus sont tous des modeles physiologiques représentant les
échanges ioniques a travers la membrane cellulaire. D’ autres types de modeles, ap-
pelés les modele phénoménologiques décrivent une approximation des canaux ion-
iques. Ces modeles permettent de décrire le phénomene d’exitabilité tout en gardant
une faible complexité. Avec seulement deux variables d’état, le potentiel d’action
Vm et une variable de recouvrement w, ces modeles sont capables de reproduire la
dépolarisation et la repolarisation cellulaire. Le premier modele phénoménologique
décrivant un potentiel d’action est celui de Fizhugh et Nagumo [Fit61a, NAY62b]
date depuis 1961. D’autres versions de ce modele adaptées aux cellules cardiaques
ont été développées par Roger et McCulloch [RM94a], Aliev et Panfilov [AP96a]
ou récement le modele de Mitchell et Schaeffer [MS03al.

e FitzHugh-Nagumo:
Lion(v,w) =kv(v—a)(v—=1)+w, g,w)=—g(yv—w).
e Roger-McCulloch:

Lion(v,w) =kv(v—a)(v—1)+ww, g(v,w)=—€(yv—w).



e Aliev-Panfilov:
Lion(v,w) =kv(v—a)(v—1)+ww, glv,w)=¢e(pwv—1—a)+w).

e Mitchell-Schaeffer:

w o \%
Iion(V,W) =V (V_l)_ )
Tin Tout
w—1 .
po siv< Voate
_ open
gvw)=4q
S1V > Vgate.
Telose

Les parametres 0 <a < 1, k, €, ¥, Tin < Tout < Topens Telose aNd 0 < Vgae < 1 sont des
constantes positives.

2 Le modele 3D: échelle macroscopique

La modélisation de I’activité électrique du cceur a 1’échelle de 1’organe a évolué
depuis I’invention de 1’appareil de mesure de ’ECG par Einthoven. Ce dernier et
Waller ont proposé le premier modele en électrophysiologie cardiaque a 1’échelle
macroscopique en considérant que le cceur se comporte comme un dipdle et que
I’ECG n’est que la projection d’un vecteur cardiaque sur les trois vecteurs formant
le triangle d’Einthoven. Le vecteur cardiaque est défini comme étant le moment
dipolaire du champ électrique du ceeur, il a été supposé, dans un premier temps, fixe
puis, mobile suivant le front de I’onde de dépolarisation. Nous renvoyons a [MP93]]
pour plus de détails sur cet aspect de modélisation. L’approche “milieu continu”
de la modélisation de la propagation de 1’onde électrique dans le coeur a été intro-
duite par Schmitt [Sch69] en 1969. Cette approche appelée le modele bidomaine
a été fomulée mathématiquement par Tung [[Tun?/8] en 1978. Depuis sa formula-
tion (voir la section 2.1)), ce modele est devenu la référence adoptée par la ma-
jorité des chercheurs pour la modélisation de I’activité électique du cceur. D’autres
travaux concernent uniquement la propagation du front d’onde de dépolarisation
sur le myocarde. Ces travaux utilisent le modele eikonal [CEGPT98bl I(CFGPT98al
ou [TomO00]. Ce modele permet de suivre le front d’onde de dépolarisation (donner
la position du front d’onde a un instant donné) sans faire face au lourd calcul des
équations du modele bidomaine. Nous renvoyons aux travaux de Colli Franzone et
al. [CEGY3| ICEGPT98al ICEGPTI8b, ICFGTO04]] pour plus de détails sur ces mod-
eles.



2.1 Le modéle bidomaine

Nous introduisons ici le modele bidomaine pour représenter I’ activité électrique du
ceeur [Tun78l [CFS02, ISLCT06, [PBCO3| [Lin99, ISLC' 06, [Pic05]. Ce modele est
établi a partir des bilans électriques au niveau d’une cellule cardiaque. A 1’échelle
microscopique, le tissu cardiaque est composé de deux milieux distincts : le milieu
intra-cellulaire, composé des cellules musculaires cardiaques, et le milieu extra-
cellulaire, composé du reste du volume cardiaque. Nous notons respectivement Q4 ;,
Qy . et Qy le domaine intra-cellulaire, le domaine extra-cellulaire et le domaine
total occupé par le coeur (voir la Figure[I0). Ainsi, nous avons:

.QiH = .QHJ U -QH,c-

Notons j;, j. et uj, ue respectivement la densité de courant et le potentiel électrique
intra- et extra-cellulaire. Puisque les milieux intra- et extra-cellulaire sont assimilés
a des conducteurs passifs a 1’état quasi-statique, ces termes sont reliés par la loi
d’Ohm:

j i= _Givui7

. (®)

Je = —0eVite,
ou oj et 0. sont les tenseurs de conductivité des milieux intra et extra-cellulaires.
Les milieux intra et extra-cellulaires sont séparés par une membrane I, = dQp;N
0y ¢ et nous définissons I, la densité surfacique de courant sur I, mesurée de
Qp ; vers Qy . La conservation de la charge implique que, sur I,

Im = ji-n=—je-n, €))

ol n est la normale unitaire extérieure a Qp ;.
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Fig. 10 Coupe du cceur avec les domaines intra et extra-celullaire : Qp; et Qp ¢



La membrane cellulaire se comporte a la fois comme une résistance et une ca-
pacité. En effet, d’une part, la membrane est formée d’une double couche de lipides
isolante ce qui lui confére son comportement capacitif. D’autre part, le caractere
résistif est lié a des protéines membranaires qui transportent différents types d’ions
a travers la membrane (voir Figure [)). Celle-ci est donc traversée par un courant
ionique I;o,. Ainsi, la densité surfacique de courant peut s’écrire

IVm .

Iy = Lion JFCm?JFlapp; (10)
ou Gy, représente la capacité par unit€ de surface de la membrane, iy, est le courant
appliqué (ou exterieur) et Vi, représente le potentiel transmembranaire qui est défini
par

Vin = uj — Ue. (11)

La définition de la fonction f;,, dépend des modeles ionique utilisés (voir [SLCT06,
PBCO3J] et les réferences qu’ils contiennent). Ces modeles peuvent étre de type
phénomenologique ([Fit6la, vCD80, [FK98, IMS03a]) ou de type physiologique
([BR77al [LR91al [LR94a, INVKNOS| [DS05]]). Dans les deux cas, le courant ionique
dépond de V;,, et d’un champs de variables qu’on note w, on a donc fion = fion (Vin, w).
Le champs de variables w représente les concentrations de différentes especes chim-
iques et des variables représentant I’ouvertures ou la fermetures des certaines portes
de canaux ionniques. Cette représentation est généralement donnée par le systéme
dynamique suivant
ow—+g(Vm,w) =0,

ou g est un champs de fonctions ayant la méme dimension que w, cette dimen-
sion est généralement réduite & un dans le cas ou le modele ionique utilisé est
phénoménologique.

Ensuite, une étape d’homogénéisation permet de passer d’un point de vue mi-
croscopique et discret a une représentation continue du courant électrique. Chaque
variable définie au niveau discret sur les domaines Qp; ou Qp. est remplacée
par sa valeur moyenne définie sur le domaine global Q. Cette démarche permet
de prolonger les équations satisfaites sur les domaines discrets au domaine global
Q. Pour des détails sur le processus d’homogénéisation, nous renvoyons a 1’article

[KN93]| ou a la these [Pie03]. L’équation homogenéisée associée a (@) est:
div(j;+j.) =0, dans Q. (12)
Cette équation peut étre réécrite en fonction de u; et u. d’apres
div(o;Vu; +0.Vue) =0, dans Qp,
ou, en termes de Vy, et ue,
div ((0i+ 0¢)Vue) = —div(0;VVp), dans Qp, (13)

Finalement, I’équation (I0) combinée avec (9)) devient, apres homogénéisation,



v, .
Am <Cm8tm +Ii0n(Vm,w)> =div(o;Vu;) + Lpp, dans Qy.

ou en termes de Vi, et ue,

Amn <Cm88V;n +Iion(Vm,w)> —div(oiVVm) =div(0iVue) + Lpp, dans  Qp.
14
Ici, A, est une constante géométrique représentant le taux moyen de surface mem-
branaire par unité de volume et Cy, est la capacité membranaire. La fonction fjyy,
représente le courant dii aux échanges ioniques et I, le courant appliqué.
Le bord Q4 du domaine Qp, c’est-a-dire la frontiere entre le coeur et la ré-
gion extra-cardiaque (le tissu thoracique et le sang intra-cardiaque), est divisé en

deux parties : une interne, I’endocarde notée I.,q0, €t une externe, I’épicarde notée

I¢pi (voir la Figure . Nous définissons X def I¢ngo Ulgpi. Au niveau cellulaire, on

epi
Qn

Fig. 11 Coupe du domaine cardiaque : Qy

observe expérimentalement que le courant intra-cellulaire j; ne se propage pas a

I’extérieur du cceur (voir [Pag62]]). Par conséquent, sur le bord du cceur on impose:
oiVu;-n=0, sur X, (15)

avec n la normale unitaire extérieure sur dQy. Cette equation a été proposée par
Tung [Tun78]| et confirmée par Krassowska [KN94]. D’apres (T1)), cette condition
s’écrit, en terme de Vi, et 1,

oiVue-n=—-0;VVy-n, sur X. (16)

Enfin, lorsque 1’on suppose que le cceur est électriquement isolé du milieu environ-
nant (pas de couplage avec le thorax) on a



oeVie-n=0, sur X. (17)

Cette condition est adoptée dans la littérature pour tous les travaux basés sur I’étude
du cceur isolé. En combinant (I3)-(T7), on obtient le modéle bidomaine dit isolé:

aV
Am (Cma;n ~+ Lion (Vm,w)> — diV(GiVVm) = diV(GiVue) —‘y—IaPP, dans Qpy,
div ((0i+ 0¢)Vue) = —div(oiVVin), dans Qy,
ow+g(Vim,w) =0, dans Qp,

oiVVpn-n=—-0iVue-n, sur X

)

(6i+0e)Vue-n=—-0iVVyy-n, sur X.
(18)

3 Modéle du thorax

Un des objectifs de ce travail est de simuler un électrocardiogramme, ceci consiste
a mesurer des différences de potentiel sur la surface du corps humain. Nous avons
donc besoin de coupler le modele du ceeur avec un modele électrique du tissu en-
vironnant. Le domaine thoracique est noté Qr (voir Figure et ur désigne le
potentiel dans Qr. Le thorax est considéré dans un état quasistatique (voir [MP93]]),
il se comporte donc comme un conducteur passif c’est-a-dire le champ électrique
Et dans le thorax dérive du potentiel ut, ET = —Vur . Ainsi, d’apres la loi d’Ohm,
la densité volumique du courant dans le thorax noté jr satisfait I’équation suivante,

jT = 7GTVMT, dans .QT, (19)

ou o représente le tenseur de conductivité du thorax qui est en réalité trés anisotrope.
Dans la suite de ce document on néglige cet aspect anisotrope a cause de sa com-
plexitée. En effet, et a titre d’exemple, il est difficile d’avoir une description fine de
I’orientation de tout les tissus musculaires du corps humain. C’est pour cela qu’on a
supposé la conductivité scalaire. Cependant on prend en compte 1’hétérogénéité en
distinguant trois zones dans le thorax: les poumons, le squelette et le reste du tissu
[BPO3] (voir Figure[12).

La non création de charges électriques est modélisée par une divergence nulle de
la densité du courant thoracique jr,

div(orVur) =0, dans Qr, (20)

Le bord du thorax Qr est divisé en deux parties : ’'une interne X en contact avec
le cceur et I’autre externe Iy représentant la surface extérieure du thorax (voir la
Figure[T2). La frontiere I3y est supposée isolée, on impose donc

orVur-nt =0, sur Ie, 21



Fig. 12 Description géomeétrique: Le domaine cardiaque 2y et le domaine thoracique Qr inclu-
ant les poumons le squelette et le reste du tissu thoracique.

avec nt la normale unitaire extérieure sur Iy . Ce choix est généralement adopté
dans la littérature ([SLC 06, PBCO035| Lin99,ISLC" 06| [Pie03]). En revanche, d’autres
conditions aux limites sur I peuvent €tre imposées dans des conditions partic-
ulieres. Notamment, en cas de modélisation d’une défibrillation, on peut imposer
une différence de potentiel entre deux zones différentes du bord ;.

4 Couplage avec le thorax

Afin de transmettre les informations (potentiel et courant) du coeur au thorax et vice-
versa, nous avons besoin de définir des conditions de transmission (ou couplage) sur
I’interface cceur-thorax. Sur le bord X, on suppose que I’on a continuité du potentiel
et du courant entre le milieu extra-cellulaire et le milieu thoracique, c’est-a-dire,

Ue = ur, Sur X,
(22)
o.Vue-n=orVur-n, sur X.



La composante normale du flux de courant intra-cellulaire sur le bord X est supposée
nulle 6;Vu; -n = 0. Ces conditions on été formellement obtenues dans [KN94|| par
un procédé d’homogénéisation et sont adoptées dans beaucoup de travaux dans la
littérature [Lin99} ISLCT06,[PBCO03| [CPT06]. La continuité entre u, et ut a été aussi
considérée dans 1’approche eikonale présentée dans [CFGTO4]], mais d’autres con-
ditions sont utilisées pour modéliser le flux de courant a I’interface.

Pour des raisons de coiit de calculs les conditions sont relaxées dans certains
travaux ([PDGO03, [PDV09, LBG ™03, BCF09]) par les conditions suivantes

Ue =ur, sur X,
(23)
o.Vue-n=0, sur X.

Ces conditions permettent de découpler le calcul des potentiels cardiaques de celui
du thorax, leur utilisation sera discutée dans la section[3.1} En revanche, il est & noter
que ces conditions ne peuvent pas étre utilisées pour modéliser des phénomenes
pour lesquels le thorax influence le coeur (par exemple la défibrillation). I1 est néces-
saire dans ces cas d’utiliser les conditions au bord (23).

En combinant (T3)-(T6) et @I)-(23), on obtient le systéme couplé suivant (cf:
[SLC™06, [PBCO3. [CPT06]):

e Equations bidomaine-thorax:

v
Am (Cmatm +Iion(Vm,w)> —div(o;VVn) =div(oiVue) + Lpp, dans  Qy,
div ((0;+ 0c)Vue) = —div(0;VVi), dans Qy,
ow+g(Vm,w) =0, dans Qp,

div(orVur) =0, dans Q.
(24)
e Conditions aux limites:

oiVue-n=—0{VVy-n, sur X UIaqgo,
(0i+0¢)Vue-n=—0;VVn-n, sur Igngo, 25)
orVur-nt =0, sur I,

e Conditions de couplage:

Ue =ur, sur X,

{ (6i+0e)Vue-n=01Vur-n—0o;VVp-n, sur ZX. (26)

Dans la suite de ce document, nous nous intéressons a 1’etude théorique et a la
simulation numérique de I’ECG. Nous analysons 1’éxistence et 1’unicité d’une so-
lution faible du systeme couplé ceeur-thorax (24)-(26). Nous utilisons ce systeme
comme base d’un modele qui nous permettra de simuler des électrocardiogrammes
dans des cas normaux et pathologiques. La simulation numérique nous permettra
de souligner I’importance de certaines hypotheses de modélisation. Enfin, nous ex-



poserons quelques applications de 1’utilisation de cet outil au niveau médical et
industriel.






Part 11
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Chapter 4

Existence and uniqueness of the bidomain-torso
coupled problem

This chapter addresses the well-posedness analysis of the coupled heart-torso sys-
tem (24)-(26) arising in the numerical simulation of electrocardiograms (ECG).
Global existence of weak solutions is proved for an abstract class of ionic mod-
els including Mitchell-Schaeffer, FitzHugh-Nagumo, Aliev-Panfilov and MacCul-
loch. Uniqueness is proved in the case of the FitzHugh-Nagumo ionic model. The
proof is based on the combination of a regularization argument with a Faedo-
Galerkin/compactness procedure.

This chapter is part of a joint work with M. Boulakia, M.A. Ferndndez and J.-F.
Gerbeau, reported in [BEGZ08b].

1 Introduction

Fext

Fig. 13 The heart and torso domains: Qg and Qr

We assume the cardiac tissue to be located in a domain (an open bounded subset
with locally Lipschitz continuous boundary) Qy of R3 . The surrounding tissue

within the torso occupies a domain Q1. We denote by X & B N O = 9Qy the
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. . . def
interface between both domains, and by Iy the external boundary of Qr, i.e. Ik =

dQr\Z, see ﬁgure At last, we define Q the global domain Qy U Q.

A widely accepted model of the macroscopic electrical activity of the heart is the
so-called bidomain model (see e.g. the monographs [Sac04), PBC03 ISLCT06]). It
consists of two degenerate parabolic reaction-diffusion PDEs coupled to a system
of ODEs:

CmO v + fion (v, w) —div(oiVuy) = Lpp, in Qy x (0,T),
Cm9 v + fion (v, w) +div(0eVue) = Lpp, in Qy x (0,7), 27
ow+g(vm,w) =0, in Qyx(0,T).

The two PDEs describe the dynamics of the averaged intra- and extracellular po-
tentials u; and u., whereas the ODE, also known as ionic model, is related to the
electrical behavior of the myocardium cells membrane, in terms of the (vector) vari-
able w representing the averaged ion concentrations and gating states. In [27), the

quantity vy &ef uj — ue stands for the transmembrane potential, Cy, is the membrane
capacitance, 0j, 0. are the intra- and extra-cellular conductivity tensors and Ipp
is an external applied volume current. The nonlinear reaction term fipn (v, w) and
the vector-valued function g(vi,,w) depend on the ionic model under considera-
tion (e.g. Mitchell-Schaeffer [MS03al], FitzHugh-Nagumo [NAY62b] or Luo-Rudy
[LR914a, [LR94a]).

The PDE part of has to be completed with boundary conditions for u; and
ue. The intracellular domain is assumed to be electrically isolated, so we prescribe

oiVu;-n=0, on X,

where n stands for the outward unit normal on X. Conversely, the boundary condi-
tions for ue will depend on the interaction with the surrounding tissue.

The numerical simulation of the ECG signals requires a description of how the
surface potential is perturbed by the electrical activity of the heart. In general, such
a description is based on the coupling of (27) with a diffusion equation in Qr:

diV(O'TVuT) =0, in .QT, (28)

where ut stands for the torso potential and ot for the conductivity tensor of the
torso tissue. The boundary Iy can be supposed to be insulated, which corresponds
to the condition

orVur -nt =0 on I,

where n stands for the outward unit normal on I3y
The coupling between and (28) is operated at the heart-torso interface X.
Generally, by enforcing the continuity of potentials and currents (see e.g [KN94,
Gul03], [Pie05], PBCO3) ISLCT06]):
Ue = UT, on X,
{ e T (29)

6eVu.-n=o71Vur -n, on X.



These conditions represent a perfect electrical coupling between the heart and the
surrounding tissue. More general coupling conditions, which take into account the
impact of the pericardium (a double-walled sac which separates the heart and the
surrounding tissue), have been reported in chapter 5] section[5.5]

In summary, from 27), 28) and 29) we obtain the following coupled heart-torso
model (see e.g [Gul03, [Pie03, [PBCO3] ISLCT06]):

Cn9vm + fion (v, w) —div(oiVu;) = Lpp, in  Qp,
CmOVm + Lion (v, w) +div(0eVue) = Lpp, in  Qp,
alw+g(vm7w) :Oa in QHa
div(orVur) =0, in Qr,
(o1Vur) T (30)
o;iVui-n=0, on X
o.Vue-n=orVur-n, on X,
Ue =ur, on X,
orVur-nt =0, on Ii.
Problem (30)) is completed with initial conditions:
vm(0,x) = vo(x) and w(0,x) = wp(x) Vxe€ Qy, 31
and the identity
v L — e, in Q. (32)

Finally, let us notice that u, and ut are defined up to the same constant. This constant
can be fixed, for instance, by enforcing the following condition

/ ue =0,
Oy
on the extra-cellular potential.

Introduced in the late 70’s [Tun78]], the system of equations can be de-
rived mathematically using homogenization techniques. Typically, by assuming
that the myocardium has periodic structure at the cell scale [KNO3] (see also
[CES02, [PSFO6]). A first well-posedness analysis of 7)), with fig(vim,w) and
g(vm,w) given by the FitzHugh-Nagumo ionic model [NAY62b]], has been reported
in [[CESQ2]. The proof is based on a reformulation of in terms of an abstract evo-

lutionary variational inequality. The analysis for a simplified ionic model, namely

Lion(Vn,w) def Lion(Vm ), has been addressed in [BKOG]. In the recent work [BCPQO9],

existence, uniqueness and regularity of a local, in time, solution are proved for the
bidomain model with a general ionic model, using a semi-group approach. Existence
of a global, in time, solution of the bidomain problem is also proved in [BCPQ9] for
a wide class of ionic models (including FitzHugh-Nagumo, Aliev-Panfilov [AP96al
and MacCulloch [RM94a])) through a compactness argument. Uniqueness, however,
is achieved only for the FitzHugh-Nagumo ionic model. Finally, in [Ven09], exis-



tence, uniqueness and some regularity results are proved with a generalized phase-I
Luo-Rudy ionic model [LR91a].

None of the above mentioned works consider the coupled bidomain-torso prob-
lem (30). The aim of this chapter is to provide a well-posedness analysis of this
coupled problem. Our main result states the existence of global weak solutions for
(30) with an abstract class of ionic models, including: FitzHugh-Nagumo [Fit61al
NAY62bl], Aliev-Panfilov [AP96al], Roger-McCulloch [RM94a]] and Mitchell-Schaeffer
[MSO03all. For the sake of completeness, we give here the expressions of I, and g
for these models.

o FitzHugh-Nagumo model:
Lon(vw) =kv(v—a)(v—1)+w, g,w)=—€e(yv—w). (33)
o Aliev-Panfilov model:
Lon(vyw) =kv(v—a)(v—=1)+vw, glvw)=¢e(pwlv—-1—a)+w). (34
e Roger-McCulloch model:
Lon(v,w) =kv(v—a)(v—1)4+vw, gv,w)=—¢g(pv—w). (35)

e Mitchell-Schaeffer model:

w o, v
Iion(Vyw) =_V (V_ l) -
in Tout
e ifv< Veate s (36)
g(v, W) _ open
if v > vgate.
Tclose

Here 0 <a < 1,k, &7, Tin < Tout < Topen» Telose aNd 0 < vgae < 1 are given positive
constants.

To the best of our knowledge, the ionic model (36) has not yet been considered
within a well-posedness study of the bidomain equations (27). Compared to models
(B3)-([B3), the Mitchell-Schaeffer model has different structure that makes the proof
of our results slightly more involved. As far as the ECG modeling is concerned, in
chapter 5| (see also [BFGZ07, BCF'09]), we point out that realistic ECG signals
can be obtained with this model, whereas it seems to be not the case for standard
FitzZHugh-Nagumo type models (33).

The remainder of the chapter is organized as follows. In the next section we
state our main existence result for problem (30), under general assumptions on the
ionic model. In Section 3 we provide the proof of this result. We use a regularization
argument and a standard Faedo-Galerkin/compactness procedure based on a specific
spectral basis in £2. Uniqueness is proved for the FitzHugh-Nagumo ionic model.



2 Main result

We assume that the conductivities of the intracellular, extracellular and thoracic
media 63, G, o7 € [L(Qp)]>*3 are symmetric and uniformly positive definite, i.e.
there exist & > 0, & > 0 and ar > 0 such that, Vx € R3, V& € R3,

§'0i(0E > aife]’, &Toe(®)E = aeléf, ETor(E = anlEl.  (37)

. def .
Moreover, we shall use the notation o = min{cte, &t }.
For the reaction terms we consider two kinds of (two-variable) ionic models:

e I1: Generalized FitzHugh-Nagumo models, where functions /i,, and g are given
by
Iion (V,W) = fl (V) + fZ(V)Wv

gvw) =gi(v)+ciw. (38)

Here, f1, f> and g are given real functions and c; is a real constant.
e I2: A regularized version of the Mitchell-Schaeffer model (see e.g. [DSLO7]), for
which the functions J;,, and g are given by:

w v
Iion(V,W) =—f (V) -
Tin Tout 39
1 Telose — Topen ( )
glow) = (—+ ha(9)) (0= e (9),
Tclose Tclose Topen
where fi is a real function given by
fi)=vi(v=1), (40)
the function /.. is given by
1 V — Voate ) :|
he(v) = = |1 —tanh [ —E=5 ) |, 41)
0= |1 (5

and Ty, Tout, Topen, Telose» Vgate> Tgate r€ POSitive constants.
In what follows we will consider the following two problems:

e P1: System (30) with the ionic model (I1) given by (38).
e P2: System (30) with the ionic model (12) given by (39)-(&T).

In order to analyze the well-posedness of these problems, we shall make use of the
following assumptions on the behavior of the reaction terms.

e Al: We assume that fi, f> and g; belong to C!(R) and that, Vv € R,

11| < cateslvf,
2 (v) =ca+csv, (42)
g1(v)| < c6+c7|v]?,



with {Ci},'7:2 given real constants and ¢;, ¢3,cg,c7 are positives.
For any v € R,

fi)v > alv[* —blv)?, (43)
with a > 0 and b > 0 given constants.

e A2: (@2)); and @3J).

The next assumption will be also used in order to prove uniqueness of the solution
of problem P1.

e A3: Forall u > 0, we introduce Fj, as

Fy R?2 — R?
(Va W) = (.uIion(Vv W),g(v, W)),

and Q, as:
1
0u(@)® 5 (VEu() + VE(2)") . V2 € B
In addition, we assume that there exist yy > 0 and a constant Cjo, < 0 such that
the eigenvalues Ay, (z) < Az y,(z) of Qy, (2), satisfy

Cion < Ay (2) < Aoy (z), VzeERZ (44)

One can check that models (33)-(33) enter the general framework and satisfy
the assumption Al and the model given by (39)-(&1I) satisfies assumption A2. In
addition, A3 holds true for the FitzHugh-Nagumo model. We refer to [BCPQ9]], for
the details.

In what follows, we shall make use of the following function spaces

Vi€ H (Qn),

def 1 . -
Ve = {(peH (.QH)./QH(]) 0},

Vir & {9 € H'(Qr) : 95 =0},

def Q) : = .
|4 {(j)EH( ) /QH(P 0}
def

For times 7T, ¢ and #, we introduce the cylindrical time-space domains Qr =

(0,T) x Qq, O def (0,7) x Qu, Oy, def (0,,) X Qy, and we define u as the extra-

cellular cardiac potential in £y, and the thoracic potential in Qr, i.e.:

def [ ue in Qp,
u= .
ut in Q.

From the first coupling condition in (29)), it follows that u € H' () provided that
ue € H'(Qq) and ur € H'(Qr). Similarly, we define the global conductivity tensor



o€ [L°(Q)] as
def | O¢ in Qy,
o oT in Q.

Definition 1. A weak solution of problem P1 is a quadruplet of functions (v, u;, u, w)
with the regularity

vm € L7(0,T;H' (Qp)) NH' (0,T;L*(2y)),
ueLl™(0,T;V), weH (0,T;L*(Qy)),

and satisfying (31)), and

(45)

Co [ vmor+ / Vi Vi + / Fon (v, ) = / Lopt,  (46)

Qy

Cm/ a,vmy/—/ cVu-Vy/—k/ Iion(vm,w)y/:/ Lpp Vs 47)
'QH Q QH ‘QH

ow+ g(vm,w) = 0. (48)

forall (¢, y,0) € H'(Qy) x V x L*(Qy). Equations (@6) and holds in 2/(0,T)
and equation (48) holds almost everywhere. On the other hand, a weak solution of
problem P2 is a quadruplet (u;,u,vm,w) satisfying @3) 1)), (32), (@6)-({@7) and
weWL=(0,T,L°(Qn)), dw+g(vm,w)=0,ae.on Qr.
Since w € H'(0,T;L*(Qy)) it follows that w € C°(0,T;L*(Qy)), which gives a
sense to the initial data of w. In the same manner, the initial condition on v, makes
sense.

The next theorem provides the main result of this chapter, it states the existence
of solution for problems P1 and P2.

Theorem 1. Let T > 0, Ly, € L*(Qr), 61, 0¢ € [L™(Qu)]>*3 symmetric and satis-
fring @), wo € L2(Qu) and vy € H' (Qy) be given data.

o [f Al holds, then problem P1 has a weak solution in the sense of Definition
Moreover, if assumption A3 holds true, the solution is unique.
o If A2 holds and wy € L*(Qu) with a positive lower bound r > 0, such that

r<wo<1 in Qp, (49)
then, problem P2 has a weak solution in the sense of Definition

The next section is fully devoted to the proof of this theorem.



3 Existence of weak solution of the bidomain-torso problem

Two main issues arise in the analysis of problem (30). Firstly, the non-linear
reaction-diffusion equations (30); » are degenerate in time. And secondly, we have
a coupling with a diffusion equation through the interface X. The first issue is over-
come here by adding a couple of regularization terms, making bidomain equations
parabolic. The method we propose simplifies the approach used in [BK06] by merg-
ing regularization and approximation of the solution . Then, the resulting regu-
larized system can be analyzed by standard arguments, namely, through a Faedo-
Galerkin/compactness procedure and a specific treatment of the non-linear terms.
On the other hand, the second matter can be handled through a specific definition of
the Galerkin basis.

In paragraph [3.1] regularization and Faedo-Galerkin techniques are merged by
introducing a regularized problem in finite dimension 7. In the next paragraph, exis-
tence of solution for this problem is proved. In paragraph [3.3] energy estimates are
derived, independent of the regularization parameter % Existence of solution for the
continuous problem is addressed in section 3.4 whereas, in[4 uniqueness is proved
for problem P1, under the additional assumption A3.

3.1 A regularized problem in finite dimension

Let {h }ren+ be a Hilbert basis of Vi, { fi }xen+ be a Hilbert basis of V. and { g } ren
a Hilbert basis of Vyr, see e.g., [DL85]. We assume that these basis functions
are (sufficiently) smooth and that {/}rcn+ is an orthogonal basis in L?(Qy) (see,
e.g., IRRO4] page 268). We introduce a Galerkin basis of V by defining, for all
k € N*, fi € H'(Q) as an extension of f; in H'(Q), given by an arbitrary con-
tinuous extension operator. We also extend, for all k € N*, g by & € H 1(Q)
such that g; = 0 in Q. One can check straightforwardly that {e; }rcn+, defined as,
ex—1=fr, ew =8k Vk&N* isa Galerkin basis of V.
Finally, for all n € N*, we can define the finite dimensional spaces V; ,,, Ve u, V11
and V,, generated, respectively, by {i }i_, . {fi}i_,» {gx}r_, and {ex}3" . i.e
Vin E< iy >, Ven 2< {fidim >,
Vin E< gt >, VoS et >
Hence, we can introduce, for each n € N*, the following two discrete problems
P1, and P2, associated to problems P1 and P2, respectively:

e P1,: Find (ui,,u,) € C1(0,T;Viy x Va), w, € C(0,T; Vi) such that, for v, =
Ui — U /0, and for all (h,e,0) € V;,, x V; x Vi, we have,



1
Cm a[Vnh + - aﬂ/li_’nh + / GiVui‘,, -Vh
nJaoy Qy )

Qy
+/ Iion(VmWn)h:/ Iapphv
Qp Qp

1
Cn G,Vne—f/ 8tune—/ oVu,-Ve (50)
Qy nJjo Q

+/ Iion(vnawn)e:/ Iappev
Qy Qy

atwn9+/ g(vy,wy)0 =0,
Qy Qy

. def cp s c . .-
with v, = ui n — U, @, and verifying the initial conditions

Vn(o) = V0,n, ui,n(o) = Ui On, in Qg; Mn(o) = Ugn in Q, 1)
Wn (0) = W0,n, in QHa

Here, vo ,,wo, are suitable approximations of vy and wy in V;,, and u; g ,,u0,,
are auxiliary initial conditions to be specified later on.
o P2,:Find (u;,,u,) € C'(0,T; Vi, x V) and w,, € C'(0,T,L=(24)) such that, for
Vi = Uiy — Un /0y the triplet (Vs Ui, tty) satisfy (30D o-(51); and
0wy +g(va,wn) =0, ae.in  Qr,

52
wn(0) =wp, ae.in Q. (52)

The (auxiliary) initial conditions for u; , and u,, needed by the two problems
below, are defined by introducing two arbitrary functions u; o € H '(Qu) andug €V
such that vo = u; 9 — up in Qy. Then, for n € N*, we define (u1707n, uo,n,Wo ) as the
orthogonal projections, on V; , X V; x V; ,, of (30,0, wo). Clearly, by construction
of these sequences, we have

(Yo, 4,00, U0, WO,.n) — (VO, Ui 0, U0, W0), (53)

in V2 x V x L*(Qy).

3.2 Local existence of the discretized solution

Lemma 1. Suppose that there exists Cy such that
0.l 1 () + 1400 111 (@) F W0l 2 () < Co- (54)

For all n € N* there exists a positive time 0 < t, < T which only depends on Cy such
that problems P1,, and P2, admit a unique solution over the time interval [0,1,].



Proof. For the sake of conciseness we only give here the details of the proof for
problem P1,,, the proof for problem P2, follows with minor modifications. Since
{M}1<i<» and {e; }1<;<2, are basis of Vi, and V;,, respectively, we can write

n 2n n
win(t) =Y cisOh, un(t) = ci(ther, walt) = cwalt)h,
=1 =1 =1

n 2n n
0 0 0
uion = Zci,lhz, upy = Zcz e, Won= ch,zhz-
=1 =1 =1

Thus, introducing the notations

(55)

def def def
oS ani, e E el o™ {ewdi

0def + 0 yn 0 def ¢ 042n 0 def 0 n
G *{Ci,l}zzl, ¢ =1 s=1> Cw*{cw,z}lzla

it follows that problem P1,, is equivalent to the following non-linear system of ordi-
nary differential equations (ODE)

cl G; (t,ci,c,cw) ci(0) c?
Ml | = G(f,Ci,C,CW) , C(O) =Y (56)
c(v GW (t,Ci,C,CW) Cw (0) CE))V
Here, the mass matrix M € R¥>*#" is given by
(Cnt )My, 0 —CaMy, 0

with My, € R™", My, € R and My,, My, € R

def def
My & (/ hkh,) My, (/ hke;) ,
Qn 1<k, l<n Qn 1<k<n,1<I<2n
My,

def def
A ere; y My = ere; .
o 1<k,<2n o 1<k,I<2n

On the other hand, from the notations



Gi = {th}k:l? G= {Gk}izlv Gw = {GW,k}k:h

the right-hand side of (36) is given by

def
Gi,k(t,civcacw) = _/ O-ivui,n'th_/ Iion(vnawn)hk+/ Iapphka
Qp Qp

Qp
forall 1 <k <n,
Gk(taciaQCW) déf_/ GVun-Vek+/ Iion(VnaWn)ek_/ Iappekv
Q Qy Qy
for all 1 <k < 2n, and finally,
def
GW,k(t7ciaC7CW) é _/ g(vnawn)hk;
Qy

forall1 <k <n.

According to Lemma [2] given below, the mass matrix M is positive definite and
hence invertible and, on the other hand, the right-hand side of @ is a C! function
with respect to the arguments cj, ¢ and cy. Thus, thanks to Cauchy-Lipschitz theo-
rem (we refer, for instance, to [[Car67]), we obtain the existence of a local solution
for the ODE system (56)) defined on [0, #,] where £, only depends on Cy (introduced

in (34)). This completes the proof.

Lemma 2. For all n € N, the matrix M is positive definite.

1
Proof. We can decompose M as M = C,N + —D, with
n

My, 0 0
D déf 0 M VHT 0 5
L 0 0 nM Vi

and



My, —My, 0
N déf _Mvie T MVe 0
L O 0 0

Since the matrices My,, My,,, and My, are mass matrices, we obtain that the block-

. o . . T
diagonal matrix D is positive definite. On the other hand, for each [cj ¢ cy] € R*"
we have

T
Ci Ci n
c| Nfc :E (/ Ci,zci,khlhk—2/ Ci,lCZkflhlfk‘i‘/ 621102k1f/fk>
Cw Cw Lk=1 \/€n Qu Qu
2
n
= E (cighi — cau-1fi)
Ll 12(2)

>0

)
so that N is positive. It then follows that M is positive definite.

The above lemma points out the role of the regularization term %D. It allows to
obtain a matrix M in (56) which is non-singular, so that the resulting system of ODE
is nondegenerate.

3.3 Energy estimates

In the next lemma, we state some uniform estimates (with respect to n) of the so-
lution of problems P1, and P2,. We also provide similar estimates for the time
derivative, which will be useful for the passage to the limit. For the sake of clarity,
in what follows, ¢ > 0 stands for a generic constant which depends on 7', on the
initial conditions and on the physical parameters, but which is independent of n.

Lemma 3. Let u; € H'(Qy), ug €V, wo € L*(Qy) and Lapp € L*(Qr) be given data
and let (u; p,un,wy) be a solution of P1, defined on [0,T'] for 0 < T' < T. Assume
that A1 holds true. Then, for vy = i y — n 0 and for alln € N* and t € [0,T7], we
have



1
[Vall 2= 0022000 T Vall 40y + T (||”i,n||L°°(o,;;L2(QH>) + ||”n||Lw(o,t;L2(9)))

+ [ Vttinll 120,y + 1 Vitnll 20, x2) < €
1
9vallz2(g,) + vall =01 (220)) T (”alui,n”Lz(Q,) + Hat”n“Lz((O,z)xQ))
IVl (0,02 p)) + I Vitnll =0 :02(0)) < €
(57)

and
[Wall =020 S € 19wallr2g,) < c (58)

If A2 is satisfied and wy € L*(Qy) with {@9), there exists a positive constant
Wmin (independent of T') such that a solution (ui ,,un, wn) of P2, defined on [0,T’]
for T' > 0 satisfies (57) and, for all t € [0,T’]

||Wn||W1-°°(o,x,L°°(QH)) <c¢, Wmin<w, <1, in Q. (59)

Proof. We start by proving the estimates for problem P1,,. Taking h = u; ,, e = —u,,
0 = w,, in (30) and using the uniform coercivity of the conductivity tensors (37), we
obtain:

1d 1
2m|WN§@M+CMM1émm+n<Wmﬁmh>HWNémO}

+ aiHVMi,nHiZ(QH> + aHvunHiZ(Q) +/ Iion(VnaWn>Vn
Qy

+/ g(vn,wn)w,, S/ Iappvn~ (60)
Qy

Qy

From assumption A1, we get
Lon(v,w)v—+g(v,w)w > a|v|4 - (Cg\v|2 +C9|w|2) —C10,

with c¢g,cg,c19 > 0. Thus, inserting this expression in and using the Cauchy-
Schwarz’s inequality, it follows that

1d 1
51 [Pl + Gl + 5 (Il + D)

+ OCiHVMi,nHiZ(_QH) + OCHVMnHiz(Q) +aHv”H;lA(QH)
1 2 2 ! 2
< <08 + 2) Vnll22 @)+ collwallzz gy +cr0lul+ 5 1 app 172y

Therefore, integrating over (0,7), with 7 € [0,7’], we have



1
HWnHiZ(QH) +Cm|‘vn||i2(_QH) + 0 (H"‘i,nH]z}(QH) + ||”n||22(g))

+6l|Vitial 12 g,) + @lVinlliz @ 0.9 T allvallisg,)
t
1
2 2 5
= C/o (”VnHLZ(QH) + ||Wn||Lz(QH)) +c10lQu|T + Ell]appHLz(Qr)
1
+ HWO,nHZZ(QH) +CmHV0,n||22(_QH) + p (Hlfti,o,nHiz(QH) + ||”0,n||1%2(g)) ,

forallz € [0,7']. Estimates (57); and (38)); follow by applying Gronwall lemma and
using the fact that, from (33)),

1

2 2 2 2
||W0Jl||L2(QH) +Cm||V0Jl||L2(_QH) + 7 (Hui,OJl”LZ(QH) + H”O,nHLZ(_Q)) )

is uniformly bounded with respect to n.
For the estimate of the time derivative, following [BKO6|, we notice that

fl(v)a,v=i H(v), H(v)déf/ fi. (61)
Qy 0

dt Qy

On the other hand, taking & = d;u; ,, € = dyu,, and 6 = J;w,, in (50) and integrating
over (0,7), with t € [0,T], yields

1
190wl + Cnll vl g + - (18tal22g) + 19000 20 120))
o; a
+ 5 ||V”i,n||i2(_QH) + ) HV”nHiZ(Q)
(62)

1 1
< 5 / Givui,O,n : V“i,().n + 5 / GVMo,n : VI/‘O,n + H(VO,n)

Qu Q Qy
t t
[ He+ / / Laopdhvn — / (o (v )WnOrvm -+ (v W) o).
Oy 0 JQy 0 JQu

It remains now to estimate the right-hand side of this expression. The first two terms
can be bounded using (53). For the third term, we use {@2));, the continuous embed-
ding of H'(Qy) into L*(Qy) and (53) to obtain

/ 0] = /| H / " fi(s)ds

For the fourth term, according to assumption @), we have fi(v)v+ bv? > 0. In
other words, fi(v)+bv >0 for v > 0, and f(v) +bv < 0 for v < 0. As a result,
integrating over (0,v) yields

s/ (g +1)<c.
Qy ’

fH@ggﬂ (63)

On the other hand, the fifth term can be controlled using the Cauchy-Schwarz in-
equality.



In summary, from (62)) and (38}, we get

G 1
||‘91Wn||1%2(Q,) + 7m ||atvn||1%2(Q,) + n ||at”iqn||1242(Q )

1 2 i 2 o 2
+ ;Hafu”||L2(O7t;L2(Q)) + ? HVui,nlle(QH) + EHVI""”LZ(Q) (64)

1 2 b 2
<c+ 2C HIﬁPPHLZ(Qt) + 2 anHLZ(QH)

t t t
[ [ poman= [ [ et [ [ Saw
0 0 /oy 0 Joy

For the last three terms of the right-hand side, we proceed as follows. First, using
(#2)), and Young’s inequality, we notice that

t t
’/ FH(Vn)Wn0vy =(// C40VuWy + €5V Opvywy,
0 Joy Qy

C C5 4 2
_ o 9
=7 T2 /0 /QHW" W

In addition, integration by parts in the last term with Young’s inequality and Cauchy-
Schwarz inequality yields
|Cs | ‘ / P
tWnV, n
Qy

CS// wn8tv
Qn

< C||Vn||L4(Q,) + 4 ”afW"HLZ(Q,) +c (||v0-,”||L4(QH) + HWO,n”iZ(_QH)>

2
||atvn||L2 0 + C”WnHLZ(Q )

) bl

|Wn(t)Vﬁ(f) —W0uVG ]

+elwa(O)ll 2 VaOlIFs gy

where the last term can be estimated by combining Holder’s inequality and the con-
tinuous embedding of H'(Qy) in L°(Q2y), namely,

1 3 1
a6 B gy < Iy ) ) < €m0 -

Finally, using @2)3 we have,

1
§10m)wa < c(1Qulr+ vl ) + 719wl 22

Qy

|Cl|

c1 [ |1
at < 7||Wn(t)||iz(g}{)+7HW0,11||22<QH)~

2 2
/ Wy (t) - / WO,n
Oy Qu

As a result, inserting these last estimates in @, we obtain

QH



2100+ T 0mlg + 10 g+ 1l g2
DIVl g + 5 I VialZ2 ) <+ inlappnzz(@) +elvn®)l2 g
o clwllZ2 g + ellvalltsgy + ¢ (Ioalifs gy + 1W0al22 0y )
el L2 190 0) 2 00 g+ €120l + clln (]2 g (69
forallz € [0,T"].

Therefore, using (33), the previous estimates (37)1, (38)1, and since 7/ < T, in-
equality (63) reduces to

1 G ! !
2ol )+ Nl )+ Nowtnllizgg + okl oo i
o @ i
5 Vil Zagy) + 7 Vil o) < € (1 - V"(m’%’](ﬂ“)) ’

for all z € [0,7"]. In particular, using estimates (37);, we obtain

1 ) 3
3 it 00 0 gy < ¢ (141900 g )

so that v, is uniformly bounded in L(0,7’; H'!(Qy)). Hence, we obtain the desired
estimates (57) and (58),.

Now, we consider problem P2, by proving the estimate (39). From (52)); it fol-
lows that diw, = —g(v,,w;,) and, on the other hand, according to @, we have
0 < heo < 1. Thus, from (39), we have, a.e. in [0,7"],

1 Tclose — Topen
Own > — wn( + £ hm(vn)),
Tclose Tclose Topen

(66)

1 Telose — T
athS(l_Wn)( n close OpenhW(Vn)),

Tclose Tclose Topen

which combined with Gronwall lemma yields

t
1 Telose — Topen
Wp >woexp | — + heo(v) ||,
0 Tclose Tclose Topen

! 1 Tclose — Topen
wp <1—(1—wp)exp |— + hoo (Vi) | | -
0 Telose Tclose Topen

Using ([@9), we then obtain that

f —-T .
Wmindérexp< > <w, <1, aein Q.



On the other hand, combining this estimate with (66), we get

< < , ae.in Qp.
Topen Topen

which completes the proof of (39).
Finally, the energy estimates (57); are obtained in a standard fashion by taking
h = ui, and e = —u, in (50), 2, which yields

1d 2 1 2 2 2
3 gt | CnlllBaian + 5 (laliaag) +lnlaga) ) |+ 0ilVisaliaay

+a|\vun||§2(g)+/ Iion(vn,wn)vng/ LppVn-  (67)

Qy Qy

Conversely, assumption (@3] and estimate (39) lead to

a b 1
Iion(va W)V > ?Wmin|v|4 - < + > |V|27

in Tin Tout

so that, from (67), we have

1d 2 1 2 2
3 | Cnllvelzen (”“i’"”ﬁma)*”“"”wm)]

2 2 a 4
+ O‘i”V“i,nHLZ(QH) + aHVu’l”LZ(Q) + awmin”"n”y(QH)

< (ot 3 ) Il + 5 Mool
“\ Ty Tow 2 miL2(Qy) T o 1aPPIL2 (Qy)
We then obtain the energy estimate (57)); by applying Gronwall lemma.

For the estimate on the time derivatives, we take & = d;u; , and e = dyu, in (]S_UI)
and we integrate over (0,7), with ¢ € [0,7"]. Using Cauchy-Schwarz and Young’s
inequalities, we obtain

C 1 o
S 3nl2a g+ 5 (Il g, + 1302 0,12 ) ) + 5 I Vitiallizgag)

o 2 2 1 2
+ 5 IVinllpz o) < ¢ (HV“i,O,n”LZ(QH) + HVMO,nHLz(Q)) + ﬁ”lappHLZ(Q,)

1 2 1/
+m||vnHLz(Qt>*a/o /QHanl(Vn)atVn- (68)

out

On the other hand, using the same notation in (61)) and the fact that f; satisfies @2);,
the same argument is used to obtain the inequality (63). Integrating by parts the last
term of (68), we have
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< el V(0 2
+cllwollim(a) (14 Iv0alEs 0y
telldmllizg) (14 Ivlifsg, ) -

Therefore, inserting this estimate in (68)), using (53) and the previous estimates (57);
and (59), we obtain (57),, which completes the proof of Lemma 3]

3.4 Weak solution of the bidomain-torso problem

First of all, we notice that energy estimates allow to extend the existence time of our
discrete solution (u; ,, un, wy). Indeed, according to Lemma the solution satisfies,
forallz € [0,7"'] where T” is the existence time,

i () 111 () + [0 (O 111 (@) + W ()] 220y < C1-

Applying iteratively Lemma |1} we thus obtain the existence of solution up to an
arbitrary time 7.

We want now to pass to the limit when n goes to infinity. We first consider prob-
lem P1. Let us multiply (50) by a function & € 2(0,T) and integrate between 0 and
T. For all k£ < n, we have

T T T
1
Cm/ / a&,vnhk—&—f/ / (X&tui,n/’lk—l—/ / ao;Vu, - Vh
0 Joy nJo Joy 0 Jay '
T T
+/ / aIion(VnaWn)hk:/ / O”apphka
0 -QH 0 -QH

T 1 /T T
Cm/ / Otatvnek—f/ /aa,u,,ek—/ /aGVu,,~Vek
0 Joyu njo Ja 0 Jo
T T
+/ / alion(VmWn)ek:/ / alappek
0 Jog 0 Joy

T T
/ / Ocatw,lhk—l—/ / ot g(vy,wn )y = 0. (71)
0 Joy 0 Joy

From Lemma [3| it follows that there exists four functions u € L*(0,T;V), vy, €
L=(0,T;H' (Qn)) N LYQr) NH'(0,T;L*(2y)), u; € L=(0,T;H'(Qy)) and w €
H'(0,T;1%(Qy)) such that, up to extracted subsequences, we have:

(69)

(70)



u, — uin L*(0,T;V) weak *,

Vp = v in L2(0, T; H (Qy)) weak x,
Vp — v weakly in L*(Qr),

Vn — v weakly in H'(0,T;L*(Qy)),
Ui — u; in L2(0,T;H' (Qp)) weak x,
wy, — w weakly in H' (0, T;L*(Qy)).

(72)

1 1
Moreover, according to Lemma (3] we also notice that ﬁui’" and ﬁun are
bounded in L= (0, T;L?(2y)) and L*(0, T;L*(2)), respectively. Thus, for all k € N*
and o € 2(0,T), we have

1 (7 1 (7
Iim — / / Oci)tuwhk = 07 lim f/ / a&,unek =0.
n—+too 0 o n—+o n 0 Q

Let us consider now the nonlinear terms in (69)-(7I). Since {v,} is bounded in
L*(0,T;H' (2y4)) NH'(0,T;L?*(Qx)), we have that {v,} is bounded in H'(Qr).
Hence, thanks to the compact embedding of H!(Qr) in L?(Qr), the sequence {v,}
strongly converges to vy, in L3(Q7). In addition, using the Lebesgue’s dominated
convergence theorem, we deduce that there exists a positive function ¥ € L'(Qr)
such that, up to extraction, vf, < ¥ and that v, — vy, a.e. in Q7. Thus, from (@2},
and using once again the Lebesgue’s dominated convergence theorem, it follows
that {1 (v,)} strongly converges to fi(vy) in L'(Q7). As a result,

Jim /0 ' /Q @ = /0 ' /Q il

On the other hand, since {w,} is bounded in L?>(Qr) and {v,} strongly converges to
vm in L?(Q7), we have

T T
tim [ [ antmi = [ [ apmmi
n—-oo 0 Qn 0 Qy

Thus, in summary,

T T
lim/ / (xlion(v,,,w,,)hk:/ / o Lion (Vin, W)y,
=+ Jo  Joy 0 Joy

Similar arguments allow to prove that

T T

We can then pass to the limit in # in (€9)-(71), yielding



T T
Cm/ / aa,vmhk+/ / aoiVu;-Vhy
0 Qy 0 Qy

T T (73)
+/ / OtIion(vm,w)hk:/ / alapphk,
0 Qy 0 Qy
T T
Cm/ / Ota,vmekf/ /aGVu~Vek
0 Qy 0 Q
T T (74)
+/ / Oclion(vm,w)ek:/ / o Lppey,
0 Qy 0 Qy
T
/ / o dwhy + ot g(viy, w)hy = 0, (75)
0o Joy

forall k € N* and o € 2(0,T). We obtain {@6)-{@8) from the density properties of
the spaces spanned by {/ }ren+ and {eg }ren+-

Finally, it only remains to prove that vy, and w satisfy the initial conditions (3T).
Since (v,) weakly converges to vy, in H'(0,7;L?(Qy)), (v,) strongly converges to
vm in C(0,T;H~'(Qy)) for instance. This allows to assert that vy, (0) = vo in Qg
since, by construction, v,(0) — vo in L?>(Qy). The same argument holds for w.

For problem P2, the arguments of passing to the limit can be adapted without
major modifications. For the nonlinear terms, we can (as previously) prove that {v, }
strongly converges to vy, in L*(Qr). Thus fi(v,) strongly converges to fi(vy) in
L'(Qr). Since

wy, — win L™ (Qr) weak x,

this allows to prove that

T T
lim/ / (xlion(vn,wn)hk:/ / & Lion (Vin, w)hy.
n—r+-oo 0 Qn 0 Qy

Moreover, since hw(vy) = heo(vm) a.e. in O and {he(v,)} is bounded in L= (Q7),
{he.(v,)} strongly converges in L?(Q7) to heo(vi). Thus we can also pass to the
limit in equation (52). This allows to obtain a weak solution of P2 as defined by
Definition [T}

4 Uniqueness of the weak solution

In this paragraph, we prove the uniqueness of weak solution for problem P1, under
the additional assumption A3. This is a direct consequence of the following com-
parison Lemma.

Lemma 4. Assume that assumption A3 holds and that

(vm,17ui,1>ul7wl)7 (Vm,27ui,27u27aw2)a



are two weak solutions of problem P1 corresponding, respectively, to the initial data
(v1,0,w1,0) and (v2,0,w20), and right-hand sides L pp 1 and Loy . For allt € (0,T),
there holds

[lvi(t) _VZ(I)”]Z}(_QH) +[lwi(2) _W2(t)||22(_QH)
<exp(Kit)K; (||V1,0 20072y T W10 = W20[72 gy + app.1 _Iapp,ZHZZ(Ql)> :
with K1, K> > 0 positive constants only depending on Cp,, Uy and Cigy.

Proof. The proof follows the argument provided in [BCP09] for the isolated bido-
main equations. According to Deﬁnition we have, for all ¢; € L*(0,T;H' (2n)),
v € L?(0,T;V) and 6 € L*(0,T;L*(2xy),

t
Cm/ 8,(v1 —v)o; + / / oi( V’/lll Vulz) Vo
Qy
/ / Lion V1,W1 Lion V27W2 ¢1 / / app,l - app2)¢1a
Qy
Cm/ (9,(\/1 —V2 Y — / / Vul Vuz) Vy
Qy
/ / fion V1>W1 fion V27W2 l// / / dpp 1 _Idpp Z)II/
Qy

/0’ QHaI(WI_WZ)‘”/O Aﬂ(g(V1,W1)—g(Vz,wZ))9:0.

For p > 0, we take in this expression ¢ = pu(uij —ui2), ¥ = —p(u1 — uz) and
6 = wj —wy. Thus, adding the resulting equalities, we have

1
22 () =20l + 5 101 () = w20

1 (V1 = 12) 220, + @Vt = 102) 22001 )

+,U/OZ/QH(Iion(V1,Wl)_Iion(szwz))(vl _VZ)

t (76)
+/0 /QH(g(vl,wl)—g(vz,wz))(Wl_Wz)

1 2
1.0 =v20ll72 g4 +5lwro=w2olli2qp)
2
u 1
+ 7||Iapp,1 —Iapp,2||i2(Q,) + §||Vl - VZHiz(Qty

< HCm
- 2

Let yp > 0 the parameter provided by assumption A3. We define



D(vi,wi,v2,w2) dZCf/ 10 (Tion (v, w1) = fion (v2,w2)) (vi — v2)
o (77)

+ [ (g = glumwa) o —wa),
Oy
Denoting z def (v,w) and using A3, we have

D(vi,wy,v2,wa) = P(z1,22) :/ (Fuo(21) = Fyo(22)) - (21 — 22).

Qy

Since Fy, is continuously differentiable, a Taylor expansion with integral remainder
yields

1
Fuo(zl)_Fuo(@):/o VFy (Ezi4+(1—-&)z) - (21 —22) dE, Vzi,20 € R%.

Inserting this expression in (77) and using the assumed spectral bound (@4), there
follows

1
CID(Z1,Z2)=/O /Q (z1 —22) - VFy (Ez1 + (1= &)z2) - (z1 —22) d&

1
> Cion/ ||Z1 _ZZHiZ(QH)dg
0
= Cion([v1 _V2||22(QH) +[[wi _W2H22(QH))'

Therefore, from with u = po, we have

C 1
B0y (1) —v2(0)|[72(0) + 5 W1 (8) = w2 (D)1 72
2 (@u) " 2 (2n)
uc, 1 u?
< Zm ||Vl,0 - VZ,OHiZ(_QH) + ) HWI,O - W2,0||i2(QH) + 7|‘Iapp,l *Iapp,2||iz(Qt)
1 2 2
+ 3 —Cion| [Iv1 — "ZHLZ(Q,) + |Cionl|[w1 _W2HL2(Q,)'

(78)
We conclude the proof using Gronwall Lemma.
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Chapter 5

Mathematical modeling of Electrocardiograms:
A numerical study

This chapter deals with the numerical simulation of electrocardiograms (ECG). Us-
ing the heart-torso coupled problem (24)-(26)), our aim is to find the minimal model-
ing assumptions allowing to provide realistic 12-lead ECGs. The numerical imple-
mentation is based on state-of-the-art numerical methods: domain decomposition
techniques and second order semi-implicit time marching schemes, offering a good
compromise between accuracy, stability and efficiency. The numerical ECGs ob-
tained with this approach show correct amplitudes, shapes and polarities, in all the
12 standard leads. The relevance of every modeling choice is carefully discussed
and the numerical ECG sensitivity to the model parameters investigated.

This chapter is part of a joint work with M. Boulakia, S. Cazeau, M. A. Ferndndez
and J.-F. Gerbeau, reported in [BCE"09).

1 Introduction

The electrocardiogram (ECG) is a noninvasive recording of the electrical activity of
the heart, obtained from a standard set of skin electrodes and presented to the physi-
cian as the “12-lead ECG”: that is, 12 graphs of the recorded voltage vs. time. The
ECG can be considered as the most widely used clinical tool for the detection and
diagnosis of a broad range of cardiac conditions (see e.g. [Aeh06}Gol06]). Despite
that, the clinical significance of some ECG findings is still not fully understood.
Computer based simulations of the ECG, linking models of the electrical activity of
the heart (in normal or pathological condition) to the ECG signal, can therefore be
a valuable tool for improving this knowledge. Such an ECG simulator can also be
useful in building a virtual data base of pathological conditions, in order to test and
train medical devices [EFG™09]. Moreover, being able to simulate realistic ECGs
is a necessary step toward the development of patient-specific models from clinical
ECG data.

The mathematical modeling of the ECG is known as the forward problem of
electrocardiography [LBG™03]. It relies on three main ingredients: a model for the

61



electrical activity of the heart, a model for the torso (extracardiac regions) and some
specific heart-torso coupling conditions. Within each of these components, several
options are possible, with different levels of complexity and realism (see [LBG™03]]
for a recent comprehensive review).

Although many works have been devoted to the numerical simulation of cardiac
electrophysiology (see e.g. the monographs [Sac04, [PBC05,ISLCT06]] and the refer-
ences therein), only a small number [Hui98, PDGO03|[LBG™ 03, KSW™07, TDP" 04/
PDV(9] addresses the numerical simulation of ECGs using a whole-heart reaction-
diffusion (i.e. bidomain or monodomain) model. Among them, only a very few
[PDGO3) [PDV09| provide meaningful simulations of the complete 12-lead ECG.
These simulations rely on a monodomain description of the electrical activity the
heart, a decoupling of the heart and the torso (isolated heart assumption) and a multi-
dipole approximation of the cardiac source within the torso (see [LBG™03, Section
4.2.4] and [Gul88]). To the best of our knowledge, none of the existing approaches
based on partial differential equations (PDE) and a fully coupled heart-torso formu-
lation (see e.g. [LBGT 03| Section 4.6] and [SLC06]) have shown realistic 12-lead
ECG simulations.

The main ingredients of our mathematical ECG model are standard (see e.g.
[PBCO3LISLCT 06, [LBG™03]): bidomain equations and phenomenological cell model
for the heart, and a generalized Laplace equation for the torso. Nevertheless, once
these ingredients have been chosen, several other critical aspects have to be eluci-
dated: heart-torso transmission conditions, cell heterogeneity, His bundle modeling,
anisotropy, efc.

The purpose of the present work is therefore twofold: first, provide realistic sim-
ulations of the 12-lead ECG based on a complete PDE model with a fully coupled
heart-torso formulation; second, discuss through numerical simulations the impact
of various modeling options and the sensitivity to the model parameters. Note that
the achievement of these two goals is a fundamental step prior to addressing the in-
verse problem of electrocardiography, which consists in identifying the ECG model
parameters from clinical ECG data.

The numerical methods proposed to solve the problem offer a good balance be-
tween efficiency, stability and accuracy. The PDE system made of the heart and
torso models is solved using a finite element method and a second order semi-
implicit time marching scheme (see e.g. [QSSO7]]). The coupling conditions at the
heart-torso interface are enforced by a Dirichlet-Neumann domain decomposition
algorithm (see e.g. [QV99,[TWO3]).

The remainder of this chapter is organized as follows. The ECG model equations
are presented in section 2] Section [3]is devoted to the description of the numerical
algorithm. The numerical ECGs obtained with the resulting computational model,
under a healthy and a pathological (bundle branch block) condition, are presented
and discussed in section [Z_f} Section E] investigates the impact, on the ECG, of var-
ious modeling assumptions: heart-torso uncoupling, monodomain approximation,
isotropy, cell homogeneity, resistance-capacitance behavior of the pericardium. In
section[6] we present a time and space convergence study in terms of the ECG. The



sensitivity of the ECG to the main model parameters is also investigated. At last,
conclusions and some lines of forthcoming research are drawn in section

2 Modeling

This section contains standard material (see e.g. [SLCT06, Chapter 2]). It intro-
duces notation and the coupled system of partial and ordinary differential equations
(PDE/ODE) involved in the reference mathematical model considered in this chap-
ter.

2.1 Heart tissue

Our reference model for the electrical activity of the heart is the so-called bidomain
model [Tun78),ISLC™06,[PBCO3]. This macroscopic model is based on the assump-
tion that, at the cell scale, the cardiac tissue can be viewed as partitioned into two
ohmic conducting media, separated by the cell membrane: intracellular, made of the
cardiac cells, and extracellular which represents the space between them. After an
homogenization process (see [NK93| [PSF06]), the intra- and extracellular domains
can be supposed to occupy the whole heart volume 2y (this also applies to the cell
membrane). Hence, the averaged intra- and extracellular densities of current, j; and
Je» conductivity tensors, 0; and O, and electric potentials, u; and ue, are defined in
Qp. The electrical charge conservation becomes

div(ji+Jje) =0, in Qu, (79)

and the homogenized equation of the electrical activity of the cell membrane is given
by

v o .
Am (cmat"‘ +110n(vm,w)> +div(j;) = Amlpp, in  Qu, (80)
complemented with the Ohm’s laws
Ji=—0iVu;, j.=—0cVie. 81)

Here, V}, stands for the transmembrane potential, defined as

Vin & 5 — e, (82)

Ap, is a constant representing the rate of membrane area per volume unit and Gy,
the membrane capacitance per area unit. The term o, (Vin, w) represents the ionic
current across the membrane and /I, a given applied current stimulus. Both currents
are measured per membrane area unit.



In general, the ionic variable w (possibly vector valued) satisfies a system of ODE

of the type:

‘;—”:+g(vm,w):o, in Q. (83)

The definition of the functions g and /i, depends on the considered cell ionic model
(see [Tun78, ISLCT06, [PBCO3] and the references therein). According to their de-
gree of complexity and realism, the ionic models typically fall into one of the follow-
ing categories (see [PBCOS, Chapter 3]): phenomenological (e.g. [Fit61al, vCDS80,
FK98| IMS03al]) or physiological (e.g. [BR77al [LR91al [LR94a,INVKNIS| [DS05]).

In this study, the phenomenological two-variable model proposed by Mitchell
and Schaeffer in [MS03a] is considered (rescaled version). The functions g and f;o
are then given by

K (Vm - Vmin)z(vmax - Vm) 1 Vo — Viin

I V W) = — )
1on( " ) Tin Vmax - Vmin Tout Vmax - Vmin
1
o e e L
g(Vm7W) — open open \ Vmax min

if Vi > Vgate,

Tclose
where Tin, Tout, Topen> Teloses Veate are given parameters and Vipin, Vimax scaling con-
stants (typically -80 and 20 mV, respectively).

Despite its reduced complexity (2 state variables, 5 free parameters), the Mitchell-
Schaeffer model integrates relevant physiological properties of the cell membrane:
transmembrane potential, activation dynamics and two currents (inward and out-
ward) leading to depolarization and repolarization. Moreover, owing to its planar
character, the model can be understood analytically (see e.g. [MS03al), which al-
lows to identify how the free parameters affect its behavior (see subsection [d.1.6)).

The gate variable w depends on the change-over voltage Vgaee and on the time
constants for opening, Topen, and closing, Tcjose- The time constants T, and Tgjose
are respectively related to the length of the depolarization and repolarization (final
stage) phases. Typically, these constants are such that T, < Tout < Topens Telose-

To sum up, the system of equations modeling the electrical activity within the
heart is

A% . . .
Amn (Cm3tm —l—Ii(m(Vm,w)) —div(0iVVm) —div(oiVue) = Amlypp, in  Qp,
—div((oj+ 0¢)Vue) —div(o;VViy) =0, in  Qp,
d

a—v: +8(Vm,w) =0, in Qy,
(85)
with g and fi,, given by (84). This system has to be complemented with appropriate
initial and boundary conditions. Denoting by V.0 and w® given initial data for the

transmembrane potential and the gate variable, the following initial condition must



be enforced
Vin(x,0) =V2(x), w(x,0) =w’(x) Vxe Qu. (86)

As regards the boundary conditions on X &ef 0Qy (see Figure , it is widely as-
sumed (see e.g. [Tun78, [KN94, PBC03,[SLCT06])) that the intracellular current does
not propagate outside the heart. Consequently,

Jirn=0iVu;-n=0, on X

7

where n stands for the outward unit normal to Q2y. Equivalently, and owing to the
divergence structure of 1, this condition can be enforced as

oiVVpn-n+o0oiVue-n=0, on X. 87)

Fig. 14 Geometry description: the heart domain Qg and the torso domain Qt (extramyocardial
regions)

2.2 Coupling with torso

To set up boundary conditions on the extracellular potential u., a perfect electric
transmission between the heart and the torso domains is generally assumed (see e.g.
[Tun78, [KN94, PBC03}, ISLC"06]):



= ) 27
{ Ue = UT on (88)

6eVu.-n=o7Vur-n, on X.

Here, ut and ot stand respectively for the potential and conductivity tensor of
the torso tissue, denoted by Qrt (see Figure @ Note that, with , the current
continuity condition (88)), is consistent with the divergence structure of (83]),. Other
possible heart-torso transmission conditions will be discussed in sections [5.1] and
5.3

Under the quasi-static assumption [MP93], the torso can be viewed as a passive
conductor. Therefore, the potential ut satisfies the generalized Laplace equation:

div(orVur) =0, in Qr. (89)

This equation is complemented with a boundary condition on the external boundary

def . .
Ly = Q7 \ X (see Figure . Moreover, assuming that no current can flow from

the torso across I, we enforce
orVur-nt =0, on I, (90)

where nt stands for the outward unit normal to Q.

In summary, our reference model for the ECG is based on the coupled solution of
systems (83)), (84) and (89), completed with the boundary conditions (7)) and (90),
the interface conditions and the initial condition (86). Throughout this study,
this system of equations will be termed RM (reference model), which is also known
in the literature as full bidomain model (see e.g. [CNLHO04]). The interested reader is
referred to Chapter[d] for a proof of the mathematical well-posedness of this system,
under appropriate assumptions on the structure of ;,, and g.

Although additional complexity and realism can still be introduced through the
ionic model (see e.g. [BR77a, [LR91a, [LR94a, INVKNOIS| IDS03]), this coupled sys-
tem can be considered as the state-of-the-art in the PDE/ODE modeling of the ECG
(see e.g. [LBGT03]).

3 Numerical methods

This section is devoted to a brief presentation of the numerical method used to solve
the coupled problem RM.

3.1 Space and time discretization

The discretization in space is performed by applying the finite element method to
an appropriate weak formulation of this coupled problem. Let Q be the interior of



QuUQr. Problem RM can be rewritten in weak form as follows (see Chapter El):
fors >0, Viu(-,1) € H' (Qu), w(-,1) € L™(Qu) and u(-,r) € H' (Q), with [, u=0,

such that
OV
Am/ (Cm 9 10n(Vm,W)) ¢ Jr/ cyiV(Vm + u) V¢ :Am/ IaPP(P’
Qy t Qy Qq

L/(Q+GJWrVW+/ mV%wa+/ orVu-Vy =0,
Qy Qy Qr
ow

ot

+g(Vm,w)=0, in Qp,

oD
for all (¢,y) € H'(Qy) x H' (), with fQH y = 0. The potentials in the heart and
the torso are recovered by setting ue = u|q,, and ur = u|q,. Note that this weak
formulation (O1) integrates, in a natural way, the coupling conditions (88).

The space semi-discretized formulation is based on and obtained by replac-
ing the functional spaces by finite dimensional spaces of continuous piecewise affine
functions, Vj, C H'(Qy) and W, C H'(Q).

The resulting system is discretized in time by combining a second order im-
plicit scheme (backward differentiation formulae, see e.g. [QSS07]) with an explicit
treatment of the ionic current. We refer to [EB08a] for a recent review which sug-
gests the use of second order schemes. Let N € N* be a given integer and consider

. .. . def . .
a uniform partition {[t,,f+1]}o<n<n—1, With 2, = ndt, of the time interval of in-

terest [0, 7], with a time-step Ot Ly /N. Denote by (V2 u",w") the approximated

solution obtained at time t,. Then, (V2*! 4"+ w"*1) is computed as follows: For
0<n<N-1

. ad def —
1. Second order extrapolation: V11 = 2y —yi-1;
2. Solve for w1 € V:

1 /3 1 ~
5 <2w"+1 — 2w+ 2w”_l) +g(Va w1y =0, (nodal-wise);

3. Tonic current evaluation: Ilon(V"“ withy;
4. Solve for (VA*! y"1) € v, x W, with f W't =0:

Cm (3 1
Am/ == (vt —avp 4 et ¢+/ Va4 u) v
QH 6t 2 2 'QH

:Am/ (Iapp(tn-H) _Iion(‘ngrlenJrl)) 0,
Q

H

/(Gi+oe)Vu”+1-Vl//+/ civvn'g“.vwr/ orVu™ . Vy =0,
Qq Qy Qr
(92)



for all (¢, y) € V, x W, with / v = 0. Finally, set u"*! = u"g]_: and ut™ =
Qy

n+1

ut
|Qr

The above algorithm is semi-implicit (or semi-explicit) since, owing to the ex-
trapolation step 1, it allows the uncoupled solution of steps 2 and 4, which are
computational demanding. The interested reader is referred to [LBGT03, Section
4.6] for an analogous approach, using a different time discretization scheme and to
[SPMOS! 'VWdSPT 08, [CFP04, IGGMN ™09, [Sca08|, [PS08]| for a description of var-
ious computational techniques (preconditioning, parallel computing, etc.) used for
the numerical resolution of the bidomain equations.

3.2 Partitioned heart-torso coupling

At each time step, the linear problem (92)) requires the coupled solution of the trans-
membrane potential V/**! and the heart-torso potential «"*!. This coupling can be
solved monolithically, that is, after full assembling of the whole system matrix (see
e.g. [LBGT03, Sections 4.6 and 4.5.1] and [SLMTO02, [SLCT06, BP02]). But this
results in a increased number of unknowns with respect to the original bidomain
system. Moreover, this procedure is less modular since the bidomain and torso equa-
tions cannot be solved independently.

This shortcoming can be overcome using a partitioned iterative procedure based
on domain decomposition (see e.g. [QV99, [TWO03]). In this study, the heart-torso
coupling is solved using the so-called Dirichlet-Neumann algorithm, combined with
a specific acceleration strategy. A related approach is adopted in [BP02] (see also
[LBG ™03, [PBCO3]), using an integral formulation of the torso equation (89).

The main idea consists in (k-)iterating between the heart and torso equations via
the interface conditions

M%“vk“ =tk on X,
o.Vu

n+1k+1 n+lk+1
T

~ -n=o1Vu n, on ZX.

Hence, the monolithic solution is recovered at convergence. In the framework of
(©2),, this amounts to decompose the discrete test function space W), as the direct
sum W, = Z;, o ® £Vj,. The subspace Z;, o contains the functions of W), vanishing
in Qy, whereas £V, is the range of the standard extension operator .Z : V, — W),
satisfying, for all Y, € V,

LY =y, in HH&
z‘l’e = 07 on I—éXt'

The full algorithm used in this chapter to solve @_21) reads as follows: For k > 0,
until convergence,



e Torso solution (Dirichlet):

1k+1
Mn+ K1 MngrlAk

T , on X

/ GTVLL?L]’]{M -Vl[/T =0, VIIIT S Zh,O«
Or
e Heart-bidomain solution (Neumann):
Cn/3 1 .
_|_/ GiV(V£+l’k+l +ug+l,k+l) . V(])
Qy
= An / (fap(tae) — hen (V™ ) ) 6, 93)

Qy

/ (6i+ce)vug+17k+1 Vwe_i_/ Givvrg+l,k+l Vvle
Qy Oy

=— / oVl v 2y,
Or

for all ¢ €V}, and y, € V},, with / W =0.
Qy
e Relaxation step:

—_—
n+1,k+1 n+1,k+1 n+1k
7 |E(—(Dkue ‘2—’_(1_0)/{)”6 |z

The coefficient @y is a dynamic relaxation parameter which aims to accelerate the
convergence of the iterations. In this work, the following explicit expression, based
on a multidimensional Aitken formula (see e.g. [IT69]), has been considered

(;Lk 7&1(—1) . (;Lk 71k+1 k-1 Jrjlk)
|,1/<,1k+1 7)Lk71+//’ik|2

_ kdef ni1k
a)k— ), —Me ‘2

)

4 Numerical results

In this section, it is shown that the full PDE/ODE based model RM, completed
by additional modeling assumptions, allows to get meaningful 12-lead ECG sig-
nals. Moreover, the predictive capabilities of the model are illustrated by providing
realistic numerical ECG signals for some known pathologies, without any other cal-
ibration of the model than those directly related to the pathology.



4.1 Reference simulation

Throughout this chapter, the terminology “reference simulation” (or RS) refers to
the 12-lead numerical ECG signals obtained by solving the reference model RM
of section [2] with the numerical method described in section [3] and the modeling
assumption described in the following paragraphs. The model parameters used in
the RS are summed up in Tables below and, as initial data, we have taken
VO = Viuin and w® = 1/(Vinax — Vinin) >

4.1.1 Anatomical model and computational meshes

The torso computational geometry (see Figure [T3), including the lung and main

bone regions, was obtained starting from the Zygotg'| model — a geometric model

based on actual anatomical data — using the 3—-mat i g’|software to obtain computationally-
correct surface meshes. The heart geometry is simplified, based on intersecting el-
lipsoids, so that the fibers orientation can be parametrized in terms of analytical
functions. We refer to for the details of the geometrical definition of the

heart. Note that this simplified geometry only includes the ventricles. We therefore
cannot simulate the P-wave of the ECG.
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Fig. 15 Computational torso mesh.
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The 3D computational meshes of the torso and the heart are displayed in Fig-
ures [T3] and They have been obtained by processing the surface meshes with
the softwares Yams and GHS3D [GHS90]. The number of heart nodes is
approximately 80 000, the number of torso nodes is approximately 120 000 and the
total number of tetrahedra is approximately 1 080 000.

Fig. 16 Computational heart mesh (left) and heart fiber directions (right).

4.1.2 Heart conductivity

Cardiac muscle is made of fibers. The electrical conductivity is higher along the fiber
direction than along the cross-fiber direction. The intracellular and extracellular me-
dia are therefore anisotropic. This anisotropy is included in our model defining the
conductivity tensors ¢; and O, by:

def
ie(x) S ol + (Gil,e — 0 )a(x) ®a(x), (94)

where a(x) is a unit vector parallel to the local fiber direction (Figure and Gil‘ .

and 0'1‘76 are respectively the conductivity coefficients in the intra- and extra-cellular
media measured along the fibers direction and in the transverse direction. Different
conductivities values are available in the literature (see e.g.
IMP93])). The values used in our simulations, originally reported in [PDRT06], are
given in Table m As mentioned above, the fibers directions have been set as in

SMC™06].

ol Sem Dol (Sem™ Dot (Sem D]ol (Sem™)
3.0x107[3.0x103[3.0x107*[1.2x103

Table 1 Heart conductivity parameters.



4.1.3 Torso conductivity

We assume that the torso has isotropic conductivity, i.e. ot is diagonal o1 = o7/,
and that the scalar heterogeneous conductivity or takes three different values (see
[BPO3):

G%, lungs,

or = G}’, bone,
op, remaining regions,

given in Table[2]

or(Scm D[o2(Sem T)oL(Sem™)
24x107% | 4x107° 6x 104

Table 2 Torso conductivity parameters.

4.1.4 His bundle and Purkinje fibers

The His bundle quickly transmits the activation from the atrioventricular node to
the ventricles. It is made of three main branches in the septum and gives rise to the
thin Purkinje fibers in the ventricular muscle. The activation travels from the His
bundle to the ventricular muscle in about 40ms. Interesting attempts at modelling
the His bundle and the Purkinje fibers have been presented in the literature (see e.g.
[VCQ7bl). But a physiological model of this fast conduction network coupled to a
3D model of the myocardium raises many modeling and computational difficulties:
the fiber network has to be manually defined whereas it cannot be non-invasively
obtained from classical imaging techniques; the results are strongly dependent on
the density of fibers which is a quantity difficult to determine; the time and the space
scales are quite different in the fast conduction network and in the rest of the tissue
which can be challenging from the computational standpoint.

To circumvent these issues, we propose to roughly model the Purkinje system by
initializing the activation with a (time-dependent) external volume current, acting
on a thin subendocardial layer (both left and right parts). The propagation speed
of this initial activation is a parameter of the model (see the details in appendix
|.1.5). Although this approach involves a strong simplification of the reality, it al-
lows a simple and quite accurate control of the activation initialization, which is a
fundamental aspect in the simulation of correct ECGs.



4.1.5 External stimulus

Physiologically, the activation wave begins at the sinusal node in the right atria, it
propagates to ventricles through the atrioventricular node and join the Hiss-bundle,
which activates the septum and the Purkinje fibers to stimulate all the endocardium
(see [MP93])). At the cellular scale, several models have been developed to describe
the propagation of the électrical wave in the his bundle and the purkinje fibers,
the most known one is the DiFrancesco-Noble (DN) model [DENS&S]. But at the
macroscopic level, there is a problem of localizing the pukinje fibers due to their
scale. In order to model the electric activation wave in an appropriate and simple
way, we propose to follow its time course within the heart. Our model does not
include the atria, so we suppose that only the endocardium is stimulated. The spread
of excitation is initiated within the myocardium: We apply a given volume current
density to a thin subendocardial layer of the ventricles during a small period of time
tact- In the left ventricle, this thin layer (1.6 mm) of external activation is given by

Vin

2000e+01
-5.000e+00
-3.000e401
-5.500e401

-8000e£01

Fig. 17 Geometrical description of the external stimulus (plane cut y = 0).

SE{(002) € Qu/er <a’ +by* +c < ea)s

where a,b,c,c; and ¢ are given constants, with ¢; < ¢3, see Figure The source
current Lypp, involved in (83), is then parametrized as follows:

Iapp(xvyaz7t) = ]O(Xayv Z)XS(xay7Z)X[O,tact] (t)W(x?Z7t)a

where

def . (&)
In(x,y,2) =i —_—
( » Yy ) app e —c1 e —c1

(ax® + by’ +c2%) |,

with i, the amplitude of the external applied stimulus,



def 1 if (x,y,z) GSv
0 if (x,52) ¢S,

( )def 1 if re [Oatact]a
0 if 7¢][0,tu,

1if atan(x_x())ga(z),

def Z—20
v(x,z,1) = e
0 if atan 0) > o(t),
Z—20
. def . . .
the activated angle o(r) = T and tact = 10 ms. The activation current in the right
2[act

ventricle is built in a similar fashion.

4.1.6 Cell heterogeneity

Action potential duration (APD) heterogeneity may be found at different my-
ocardium locations, for instance: between base and apex, between septal and pos-
terior sides, and transmurally (see e.g. [FBR"87] or [MP93])). Figure shows the
action potential duration heterogeneity in different locations in the heart.

Although not yet fully explained (see e.g. [COQ6], for a review), experimen-
tal evidence [HIN84, [FBR"87, [YA9S] [Ant06] suggests that transmural APD het-
erogeneity is likely to be the most important factor in the genesis of the normal
ECG T-wave shape and polarity. A number of simulation studies [dBMO02, [PDGO03|
PBLV07, [KSW07, BEGZ0T7] confirm also this (still debated) postulate. Interest-
ingly, the numerical investigations recently reported in [CEPSTOQ9] (using a highly
idealized geometry) indicate that the polarity of the T-wave (for unipolar ECG leads)
may be mainly driven by the cardiac tissue anisotropy.

In the present work, cell heterogeneity is only considered as transmural variation
of APD in the left ventricle. Hence, we assume that epicardial cells have the shortest
APD and that endocardial cells have an intermediate APD between mid-myocardial
cells (M-cells) and epicardial cells (see e.g. [YA9S]). From the analysis reported
in [MS03a, Section 3.1], the leading order of the maximum APD provided by the
Mitchell-Schaeffer ionic model (84)) is proportional to the parameter Tgjose. Thus, the
APD heterogeneity is modeled with a parameter 7.jos Varying across the left ventri-
cle transmural direction: 7" near the endocardium, 7! in the mid-myocardium

. close ose
(M-cells) and T:f:se near the epicardium (see Figure . For simplicity, we take a

constant value of T(ljgse in the whole right ventricle. The values of the parameters are

given in Table[3]
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Fig. 18 Electrophysiology of the heart.The different waveforms for each of the specialized cells
found in the heart are shown. The latency shown approximates that normally found in the healthy
heart. Source: [MP93)].
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Fig. 19 Transmural APD heterogeneity: comparison of the simulated transmembrane potentials for
endocardial cells (green), M-cells (red) and epicardial cells (blue). Snapshots of the transmembrane
potential at times # = 60 and 300 ms.
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Table 3 Cell membrane parameters.



4.1.7 Results

The ECGs are computed according to the standard 12-lead ECG definition (see
[MP93]], for instance):
1 ur (L) —ur(R), T ur(F)—ur(R), MY ur(F)—ur(L),
3 3 3
aVR Y S (r(R) —uw), aVL def S(ur(L) —uw),  aVF f S (ur(F) —uw),
Vi ur (Vi) —uw i=1,..,6,
95)
where uw & (ur(L) +ur(R) +ur(F))/3 and the body surface electrode locations
L. R, F,{V;}i—1,..¢ are indicated in Figure 20}

Fig. 20 Torso domain: ECG electrodes locations.

The simulated ECG obtained from RS is reported in Figure 21] The time and
space discretization parameters used to perform this simulation are respectively
h=0.15 cm and 8¢ = 0.25 ms. Some snapshots of the corresponding body sur-
face potential are depicted in Figure [22] Compared to a physiological ECG, the
computed ECG has some minor flaws. First, the T-wave amplitude is slightly lower
than expected. Second, the electrical heart axis (i.e. the mean frontal plane direc-
tion of the depolarization wave traveling through the ventricles during ventricular
activation) is about -40 degrees whereas it should be between 0 and 90 degrees (see
e.g. [Aeh06]). This is probably due to a too horizontal position of the heart in the
thoracic cavity. Third, in the precordial leads, the R-wave presents abnormal (low)
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Fig. 21 Reference simulation: 12-lead ECG signals obtained by a strong coupling with the torso,
including anisotropy and APD heterogeneity. As usual, the units in the x- and y-axis are ms and
mV, respectively.

amplitudes in V1 and V2 and the QRS complex shows transition from negative to
positive polarity in V4 whereas this could be expected in V3.

Despite that, the main features of a physiological ECG can be observed. For
example, the QRS-complex has a correct orientation and a realistic amplitude in
each of the 12 leads. In particular, it is negative in lead V1 and becomes positive in
lead V6. Moreover, its duration is between 80 ms and 120 ms, which is the case of a
healthy subject. The orientation and the duration of the T-wave are also satisfactory.
To the best of our knowledge, this 12-lead ECG is the most realistic ever published
from a fully based PDE/ODE 3D computational model.

4.2 Bundle brunch blocks simulations

In this paragraph, we modify the reference simulation that provided the “healthy”
ECG (Figure[21) in order to simulate a right or a left bundle branch block (RBBB or
LBBB). The purpose is to test whether the ECG produced by our model possesses
the main characteristics that allow a medical doctor to detect these pathologies.

In the RS, the right and the left ventricle are activated simultaneously. Now, in
order to simulate a LBBB (resp. a RBBB) the initial activation is blocked in the left
(resp. right) ventricle. There are two ways to model the bundle brunch blocks. The
first is to consider a dyssynchrony of activation between right and left ventricles.



Fig. 22 Reference simulation: some snapshots of the body surface potentials at times ¢ = 10, 47,
70, 114, 239 and 265 ms (from left to right and top to bottom).

This is performed by introducing a time delay of the activation wave in the left ven-
tricle (respectively, the right ventricle) for a LBBB simulation (respectively RBBB
simulation). This fashion of modeling a RBBB for instance considers that the hole
right brunch is activated after the left brunch. We denote by RBBB-50, for example,
the simulation of an ECG where the delay between the right and the left ventricle
is 50 ms. In other word the activation current in the right ventricle Lypp(x,y,z,1) is
replaced by
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Fig. 24 Simulated 12-lead ECG signals for a RBBB (o4, = 7/10).

Lpp(x,¥,2,1 — 50)

An ECG simulation of a RBBB-700 is reported in Figure[23] Numerical simulations
of a RBBB with different degrees of severity are reported in the annex ??.
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Fig. 25 Simulated 12-lead ECG signals for a LBBB (i, = 7/10).
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Fig. 26 Clinical 12-lead ECG signals for a LBBB. Source: www.ecgpedia.org (reproduced
with permission).

The second way of modeling a bundle brunch blocks is to consider a spacial
blocks, this assumes that a part of the brunches is damaged. Using the analytical
geometry and the way of defining I, the activation current is blocked at a certain
bundle block angle opp. To be clearer, this could be modeled by modifying the
expression of y(x,y,z,t) in the definition of I, by


www.ecgpedia.org

1 if atan (x—xo) < min(o(t), )
def i—20

V(x,z,t) =

0 if atan (xxo) > min(o(t), O ),
Z2—20

The results are reported in Figure[24(RBBB) and25|(LBBB). As in the healthy case,
an expert would detect some flaws in these ECGs. For example, he would expect a
larger QRS and a lead V1 without Q-wave. Nevertheless, he would also recognize
the main features that indicate the bundle branch blocks (see e.g. [MP935]]). First, the
QRS-complex exceeds 120 ms in both cases. Second, it can be seen in Figure[24]that
the duration between the beginning of the QRS complex and its last positive wave in
V1 exceeds 40 ms which is a sign of RBBB. Third, it can be seen in Figure 23] that
the duration between the beginning of the QRS complex and its last positive wave
in V6 exceeds 40 ms which is a sign of LBBB. These ECG signals compared to
clinical ECGs of the same pathology show the predictive aspect of the model. In fact,
one can see significant similarities between the generated LBBB ECG (Figure [23]
) and the clinical one (Figure [26). Specially for the QRS duration and the shape
of different leads. It is noticeable that these results have been obtained without any
recalibration of the RS, besides the above mentioned (natural) modifications needed
to model the disease.

4.3 Simulations of arrhythmia

In this paragraph, we provide simulations of ventricular arrhythmia pathologies.
Many of these diseases are du to an abnormal activation of the heart muscle. In
[Dub89] this strange activation of the myocardium is considered as a result of the
presence of some ectopic sources activating the heart with a very high frequency.
To explore the effect of this kind of pathology, we introduce ectopic sources in
the heart ventricles. These sources activate the heart in an abnormal way with a
frequency between 350 and 450 stimulations per minute. The resulting simulations
using this approach are reported in Figure [27] Since the simulated ECGs show a
kind of periodicity the simulation are more similar to ventricular tachycardia or
flutter than to ventricular fibrillation (see [Dub89])).

This pathology (flutter) could responsible of an abnormal behavior to some my-
ocardial cells. Physiologically, a ventricular flutter could easily evolute in ventric-
ular fibrillation: The hight frequency of contration caused by the flutter (about 3
contraction per second, see Figure did not allow the ventricles relaxation, so
that the ventricles do not fill with blood. Consequently a very small quantity of
blood is ejected to the body. In particular, the irrigation of the heart is not well ac-
complished by the coronary arteries. This induce a nutrition lack of the myocardial
cells which begin to behave abnormally. That is one of the origins of a fibrillation
(see [Dubg9)).
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Fig. 27 Simulated ECG signals for an abnormal activation of the heart: The abnormality comes
from ectopic sources stimulating the heart with frequencies between 350 and 450 activation per
minute. First lead, aVR and V4 (from top to bottom).

Fig. 28 Clinical polymorphic ventricular tachycardia rhythm. Source: www . ecgpedia.org(re-
produced with permission).

Using a phenomenological ionic model, one can imagine, for instance, that the
abnormal behavior is fomulated by an increase of the action potential duration in
some region. By simply increasing the value of ‘L'flr(‘gg, which is equivalent increasing
the APD in the endocardium in the left ventricle, a reentry wave appears and causes

a ventricular fibrillation. That is explained as follows: After the heart is depolarized,
the epicardium begin to repolarize (’L’flpolSe is small) while the endocardium is in the
plateau phase. Once the epicardium is totally repolarized and the endocardium is
still depolarized, a hight potential gradient between the two regions is created. This
gradient is responsible of the generation of a current density. The epicardium totally
repolarized is then activated by the generated current, then the right ventricle is ac-
tivated. At the same time, the endocardium is repolarizing. At a certain time it is

activated by the electrical waves coming from the other regions of the heart: A reen-
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try wave is then initialized. We report the corresponding ECGs to this simulation in
Figure 29] First, we remark a hight frequent activation of the myocardium, about 5
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Fig. 29 Simulated reentry ECG signals: First lead, aVR and V4.

heart beats per second. Second, the ECG signal shows different forms and different
amplitudes without any periodicity. Finally, we don’t see any feature of the ECG
waves (QRS-complex and T-wave) in the ECG shape. These are clear characteris-
tics of a fibrillation disease. The comparison between the simulated ECG signals
(Figure 29) and a typical clinical ECG of a fibrillation disease (Figure [30) shows
similarities both in frequencies and shapes of the two signals.

N A AN A

Fig. 30 Clinical ventricular fibrillation rhythm. Source:www . ecgpedia . org (Reproduced with
permission).

5 Impact of some modeling assumptions

In this section, the impact of some alternative modeling assumptions on the sim-
ulated ECG is investigated. This allows to assess to what extent the modeling as-
sumptions involved in the RS are necessary to obtain a meaningful ECG.


www.ecgpedia.org

5.1 Heart-torso uncoupling

A common approach to reduce the computational complexity of the RM consists in
uncoupling the computation of (Vi,,ue) and ut. This can be achieved by neglecting,
in (88), the electrical torso feedback on the cardiac region. That is, by replacing the
coupling condition (88), by

6Vue-n=0, on X, (96)

which amounts to work with an isolated heart domain (see e.g. [CNLHO04, PDRT06])).
As aresult, the intracardiac quantities (Vy, e ) can be obtained, independently of
ur, by solving with initial condition and insulating conditions

oiVVyn-n+0o;Vue.-n=0, on X, ©7)
o.Vue-n=0, on X.
Thereafter, the torso potential ut is recovered by solving with
UT = Ue, ON X,
T e (98)
orVur-nt =0, on I,

as boundary conditions. In other words, the uncoupled heart potential u. is trans-
ferred, from Qy to Qr, through the interface X (see [BRS77,ISSN94]).

Rather than interface based, as (98], most of the uncoupled approaches reported
in the literature are volume based (see [LBG™03, Section 4.2.4] for a review). Thus,
the torso potentials are generated by assuming a (multi-)dipole representation of the
cardiac source, typically based on the transmembrane potential gradient VV;, (see
e.g. [Gul88\ [IPBCOSI)).

From the numerical point of view, the heart-torso uncoupling amounts to replace
step 4, in section 3.1} by:

e Solving for (V+! u*1) € V), x V, With/ u =0:
Oy

Cm (3 1
Am/ - (V,g“ —2V,g+vn'§‘>¢+/ oiV(Vat! +u"t) . Ve
oy 0t \2 2 o

:Am/ (Iapp(tn+l) *Iion<V1ﬁ+1 7Wn+1)) ¢7
Qy

/9 (Gi—kce)Vug+l ~V1//e—s-/Q oivvg“ -Vy, =0,
H H

for all (¢, ) € V}, XV}, with / v, = 0.
Qy



Then, once {u/*!}o<,<n_1 are available, the torso potential is obtained by solving,
1
for u? € 7y,
n+l _  n+l
= Me R

Uy on X,

99
/ GTVu?H . VIIIT =0, Vl[/T S Zh,()' ©9)
Qr

The remainder of this section discusses the impact of the uncoupled approach on
ECG accuracy and computational cost.

5.1.1 Numerical results

Figure 3] presents the ECGs obtained with the fully coupled (i.e. the RS) and the
uncoupled approaches in a healthy condition. For the sake of conciseness, we have
only reported the I, aVR, V1 and V4 leads of the ECG. Figure [32]reports the com-
parison in the case of a pathological RBBB situation.
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Fig. 31 Comparison of the simulated healthy ECGs obtained using heart-torso uncoupling (top)
and fully heart-torso coupling (bottom).

In both cases, the amplitude of the waves of the uncoupled formulation is much
larger than in the fully coupled formulation. In the healthy case (Figure [31)), it can
nevertheless be noted that the shape of the ECG is almost unaffected. These results
are consistent with the experimental findings reported in [[GTEL91]: no significant
changes in epicardial activation but substantial increasing in epicardial potentials
magnitude were observed when the heart surface was exposed to insulating air.
Thus, considering an uncoupled formulation can be reasonable to get a qualitatively
correct ECGs, in the sense that some important features of the ECGs — for example,
the QRS or the QT intervals — are the same as in the fully coupled case. This ob-
servation is the basis of the numerical study reported in section [f] using heart-torso
uncoupling. Nevertheless, Figure [32] shows that both amplitude and shape can dif-
fer in some cases. The uncoupling assumption has therefore to be considered with
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Fig. 32 Comparison of the simulated RBBB ECGs obtained using heart-torso uncoupling (top)
and fully heart-torso coupling (bottom).

caution. Similar conclusions are given in [PBC03| Page 315] (see also [LBGT03,
Section 4.3]), by comparing the surface potentials, on a 2D torso slice, obtained
with a multi-dipole representation of the cardiac source (see remark [5.1)).

5.1.2 Torso transfer matrix computation

Under a heart-torso uncoupling assumption, the torso potential ut is computed by
solving the generalized Laplace equation (89) with boundary conditions (98)). There-
fore, ur depends linearly on the heart extracellular potential at the heart-torso inter-
face Ue|x- At the discrete level, we will see that this leads to a matrix-vector product
representation of the ECG computation in terms of the discrete extracellular poten-
tial at the heart-torso interface X.

To this aim, we introduce some additional notation and assume that the heart and
torso finite element discretizations match at the interface. For the sake of simplicity,
the degrees of freedom (DOF) of torso potential are partitioned as xt def [xTJ,xT_, s e
R+ where x1,5 denotes the heart-torso interface DOF and xt the remaining
DOF. We denote by x|y € R"* the extracellular potential DOF at the heart-torso
interface X. Finally, we assume that the 9 potential values generating the ECG (see
section , say XgcG € R?, are obtained from the discrete torso potential xT in
terms of an interpolation operator P € R%*", so that

xgcG = Pxrj, (100)

for instance, P can be a nodal value extraction of xtj. On the other hand, from
(©9), the discrete torso potential xr is solution to the following finite element linear

system:
Ann Arx XT1 0
T = . 101
o) 1]l o



Hence, by Gaussian elimination, we have that xp; = —A[; 1A12x6| 5, and by inserting
this expression in (I00), we obtain

-1
XECG = —PA[ Alx Xz
—_———
T

Therefore, the ECG can be computed from the discrete extracellular potential at the
heart torso interface, x|y, by a simple matrix-vector operation xgcG = T'Xe|x, With

def —
T = —PA;'Ars.

There are different solutions to compute 7. The naive idea consisting of com-
puting the matrix Ap !'is of course ruled out. A reasonable and natural option is to
compute matrix 7 by column (see [SSN94]), i.e. by evaluating T'e; fori=1,...,nx,
where ¢; denotes the i-th canonical vector of R"Z. But each of these evaluations
involve the solution of system (TOI) with x|z = e;, and therefore the overall com-
putational cost is proportional to ny, which can be rather expensive (remember that
ny is the number of nodes on the heart-torso interface, and is therefore of the or-
der of several thousands). In contrast, a computation by row is much more efficient
since it is only needeed to evaluate TTe fori=1,... ,9, where ¢; stands for the i-th
canonical vector of R?. From the symmetry of the finite element matrix,

1T = —ALALTPT = —AgiAL'PT.
Therefore, the matrix-vector product evaluation
TTe; = —As1A;'Ple;, (102)
N——
XT1

can be performed in two steps as follows. First, solve for [xr1,xt ] the discrete
source problem (depending on the linear operator P), with homogeneous Dirichlet

boundary condition on X:
A Ars xri| _ |Ple
el []=[7] a0

Second, from (102), evaluate the interface residual

X
T"e; = —Arixr1 = — [As1 Asy] { T’I] .
XT.x

Note that, 77 e; is nothing but the discrete current flux through the heart-torso inter-
face X, associated to the homogeneous Dirichlet condition in (103)).

In this chapter, all the numerical ECGs based on the uncoupling conditions (97)-
(©8) have been obtained using the matrix 7 presented in this paragraph (and this
matrix has been computed by row).

If the operator P is a simple extraction of nodal values from the torso potential
DOF, xr, each evaluation 77 ¢;, fori =1,...,9, can be (formally) interpreted at the



continuous level as a current flux evaluation at X of the problem

div(orVv) =6, in Qr,
v=0, on X,
orVv-nr = 07 on I_éxt,

with J,, the Dirac’s delta function at the i-th point, x;, of torso potential recording
on Iext.

Note that the transfer matrix 7' can be computed “off-line”, since it depends nei-
ther on time nor on solution in the heart. Nevertheless, this matrix has to be re-
computed when the torso conductivities are modified or when dealing with dynamic
torso meshes.

Full coupling Uncoupling Uncoupling
Laplace equation | Transfer matrix
60 4 1

Table 4 Comparison of the elapsed CPU time (dimensionless) for the computation of the ECG.

Table [ reports the elapsed CPU time needed to simulate an ECG with three dif-
ferent approaches. As expected, the uncoupling assumption significantly reduces the
computational cost of the ECG simulation, especially if the transfer matrix method
is used to recover the torso potentials. Let us emphasize that, the last two columns of
Table]refer to the same problem (uncoupled formulation) solved with two different
algorithms, whereas the problem corresponding to the first column (fully coupled
formulation) is different and a priori more accurate.

5.2 Study of the monodomain model

In the previous section we have investigated a simplifying modeling assumption that
allows an uncoupled computation of the heart and torso potentials (Vi ue) and ur.
We now discuss another simplification known as monodomain approximation (see
e.g. [CNLHO4, ICEPTO3]). Combined with a heart-torso uncoupling assumption, this
approach leads to a fully decoupled computation of Vi, ue and ur.

The next subsection investigates the implications, on ECG modeling, of the gen-
eral monodomain derivation proposed in [CNLHO04, (CFPTOSI], without any assump-
tions on the anisotropy ratio of the intra- and extracellular conductivities. The impact
of this approximation on the simulated ECG is then illustrated in subsection [5.2.4}
using the heart-torso uncoupling simplification.



5.2.1 The monodomain approximation

We assume that the intra- and extracellular local conductivities cril’t and 0';’1 are
homogeneous (constant in space). Let j e Ji + Jj. be the total current, flowing into
def .. .
Qy, and 6, = 0; + G be the bulk conductivity tensor of the medium.
From (81)) and (82), j = —0iVu; — 6.Vue = —6;VVy, — 0 Vi, or, equivalently,
1 1.
Vue = -0, 0;VVn—o0, ' j. (104)
By inserting this expression in (83); and (87), we obtain

OV

Am (C‘“at +Iion(Vm7w)> —div (oi(I -0, '61)VVn)

. 1. . 105
:—dlv(cicblj)—i—AmIapp, in Qy, (105)

Gi(I—GglGi)Van:cicb’lj-n, on X.

On the other hand, o;(/ — o, 101) = 0i0, l(O'b — 0j) = 0i0, !'6.. Therefore, by
defining

on < oi0; o, (106)

the expression (T03) reduces to

v, .
Am <Cm(9tm + Lion (Vm7w)> —div (O'mVVm)
. 1. . 107
= —div(ojo, ') +Amlpp, in Qp, (107)
OomVVn-n= cicrb’lj-n, on X.
Following [CNLHO04! [CFPT03]], we deduce from (94)
oio, ' =l + (1 — w)a®a, (108)
with ) )
w O e
' atot T dlo
By setting € def | — |, we deduce from (I08))
oic, ' =l +0(¢). (109)

As noticed in [CNLHO04], € is a parameter that measures the gap between the
anisotropy ratios of the intra- and extracellular media. In general 0 < € < 1, and
for equal anisotropy ratios € = 0 so that 00, U=l

Assuming € < 1, the expansion (109) can be inserted into by keeping the
terms up to the zero order. Thus, since L is assumed to be constant, and using
and @ up to the zero order in &, the so-called monodomain approximation is



obtained:

OV

Am (cmat+1ion(vm,w))—div(cmvvm):AmIapp, in Qy, (110)

omVVn-n=—-wo.Vus.-n, on X.

5.2.2 Heart-torso full coupling.

Under the full coupling conditions (88), Vi, and u. cannot be determined indepen-
dently from each other. Note that, in (TT0) the coupling between Vy, and u, is fully
concentrated on X, whereas in RM this coupling is also distributed in Qpy, through
(83)1. Therefore, as soon as the heart and the torso are strongly coupled, the mon-
odomain approximation does not substantially reduce the computational complexity
with respect to RM. Owing to this observation, we will not pursue the investigations
on this approach.

5.2.3 Heart-torso uncoupling.

Within the framework of section [5.1] the insulating condition (96) combined with

(TT0) yields

v, : .
Am (Cmatm +Iion(Vm,w)) —div (GmVVm) =Amlypp, in O,

OnmVVn-n=0, on X,

(111)

which, along with (83), allows to compute V;, independently of u.. The extra-
cellular potential can then be recovered, a posteriori, by solving

—div((oj+ 0.)Vue) =div(oiVVy), in Qp,
(6i+0e)Vue-n=—-0i{VVy-n, on X.

At last, the heart potentials are transferred to the torso by solving (89) with (98), as
in section[3.11

Therefore, the monodomain approximation (TT0) combined with a heart-torso
uncoupling assumption leads to a fully decoupled computation of Vy,, u. and ur.
The three systems of equations which have to be solved successively read:

1. Monodomain problem, decoupled Vi,:



v . .
Am (Cma[m +Ii0n(Vm,w)) —div(omVVin) =Amlapp, in Qn,
9 12
2 V) =0, in 2,

O0mVVn-n=0, on X.

2. Heart extracellular potential u,:

113
(6i+0e)Vue-n=—-0iVVy-n, on ZX. (113)

{div ((0i 4 Ge)Vite) = —div(0iVVin), in  Qn,
3. Torso potential ur:
div(orVur) =0, in Qr,

UT =Ue, ON X, (114)
GTVMT-I’IT:O, on Iu.

To sum up the discussion of this subsection on can say that two levels of simplifi-
cation can be considered with respect to RM: first, replacing the bidomain equations
by the monodomain equations; second, replacing the full heart-torso coupling by an
uncoupled formulation. The first simplification significantly reduces the computa-
tional effort only if the second one is also assumed.

5.2.4 Numerical results with heart-torso uncoupling

Figure @] shows the ECG signals obtained with the bidomain model (bottom) and
the monodomain approximation (top) in a healthy case, using the heart-torso uncou-
pling simplification. The simulated ECGs for a RBBB pathological condition are
given in Figure[34] These figures clearly show that the most important clinical char-
acteristics (e.g. QRS or QT durations) are essentially the same in both approaches.

The first lead, in a healthy case, of both approaches are presented together in
Figure[33] for better comparison. The relative difference on the first lead is only 4%
in />-norm. Thus, as far as the ECG is concerned, bidomain equations can be safely
replaced by the monodomain approximation.

These observations are consistent with the conclusions of other studies based
on isolated whole heart models [CNLHO4, PDR™06||. For instance, the numerical
results reported in [PDR™06] show that the propagation of the activation wave is
only 2% faster in the bidomain model and that the electrograms (point-wise values
of the extra-cellular potential) are almost indistinguishable.
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Fig. 33 Simulated normal ECG with heart-torso uncoupling: monodomain (top) and bidomain
(bottom) models.
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Fig. 34 Simulated ECG for a RBBB pathology with heart-torso uncoupling: monodomain (top)
and bidomain (bottom) models.

5.3 Isotropy

The impact of the conductivity anisotropy on the ECG signals is now investigated.
To this aim, the numerical simulations of section[d.T]are reconsidered with isotropic
conductivities, by setting

ol=0l=30x102Sem™!, ol=0l=3.0x103Sem L.

Figure [36] (top) shows the corresponding ECG signals. The QRS and T waves have
the same polarity than in the anisotropic case, Figure 36| (bottom). However, we can
clearly observe that the QRS-complex has a smaller duration and that the S-wave
amplitude, in leads I and V4, is larger. The impact of anisotropy is much more strik-
ing when dealing with pathological activations. In Figure 37] for instance, the sim-
ulated ECG signals for a RBBB pathology have been reported with anisotropic and
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Fig. 36 ECG signals: isotropic conductivities (top), anisotropic conductivities (bottom).

isotropic conductivities. Notice that the electrical signal is significantly distorted.
In particular, the amplitude of the QRS complex is larger in the isotropic case (this
observation also holds in the healthy case).

These numerical simulations show that anisotropy has a major impact on the ac-
curacy of ECG signals. Meaningful ECG simulations have therefore to incorporate
this modeling feature (see also [CEPSTO9]).
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Fig. 37 Isotropic (top) and anisotropic (bottom) conductivities in a pathological case (RBBB).

5.4 Cell homogeneity

As mentioned in subsectionm an heterogeneous coefficient 7 jose has been con-
sidered in RS to incorporate an APD gradient across the left ventricle transmural
direction. In this paragraph, the myocardium is assumed to have homogeneous cells.
The ECG signals corresponding to a constant APD in the whole heart, obtained with
Telose = 140 ms, are reported in Figure [38]
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Fig. 38 ECG signals: homogeneous action potential duration (top), heterogeneous action potential
duration (bottom).

Note that now, in the bipolar lead (I), the T-wave has an opposite polarity with
respect to the RS and to what is usually observed in normal ECGs. Indeed, with-
out transmural APD heterogeneity, the repolarization and the depolarization waves
travel in the same direction, which leads to the discordant polarity, between the QRS
and the T waves, observed in lead I. On the contrary, the unipolar leads (aVR, V1



and V4) present a similar polarity, irrespectively of the ADP heterogeneity (see also
(CEPSTQI)).

As aresult, as also noticed in [BFGZ07]], transmural
APD heterogeneity is a major ingredient in the simulation of a complete 12-lead
ECG with physiological T-wave polarities.

5.5 Capacitive and resistive effect of the pericardium

The coupling conditions are formally obtained in using an homoge-
nization procedure. In that reference, a perfect electrical coupling is assumed be-
tween the heart and the surrounding tissues.
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Fig. 39 Simulated 12-lead ECG signals: R-C heart-torso coupling conditions with R, =
10°Q cm?, C, =0 mFem™2.

It might be interesting to consider more general coupling conditions. For in-
stance, by assuming that the pericardium (the double-walled sac containing the
heart) might induce a resistor-capacitor effect. This can be a way to model patho-
logical conditions — e.g. pericarditis, when the pericardium becomes inflamed —
or to take into account the fact that, even in a healthy situation, the heart-torso cou-
pling can be more complex. Thus, we propose to generalize (88), by introducing the
following resistor-capacitor (R-C) coupling conditions:
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Fig. 40 Simulated 12-lead ECG signals: R-C heart-torso coupling conditions with R, =
10*Q cm?, C, = 0 mF cm 2.
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Fig. 41 Simulated 12-lead ECG signals: R-C heart-torso coupling conditions with R, =
10 Q em?, €, = 10~ 2mFem 2
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Fig. 42 Simulated 12-lead ECG signals: R-C heart-torso coupling conditions with R, =
10 Q em?, €, =10~ mFem 2.

where C,, and R, stand for the capacitance and resistance of the pericardium, respec-
tively. Note that, the classical relations (88) can be recovered from (I13)) by setting
R, = 0. To the best of our knowledge, the resistor-capacitor behavior (IT3)) of the
pericardium is not documented in the literature, so we propose to study its effect on
ECGs through numerical simulations.

Numerical tests showed that for R, small (R, < 10* Q cm? approximatively) or
G, large (C, > 1 mF cm ™2 approximatively) the simulated ECG is very close to the
RS. Figure for instance, presents the ECG signals obtained with R, = 10°Q
cm? and Cp = 0 mF cm?.

In order to illustrate the resistor effect, we have reported in Figure [40| the ECG
obtained with C, = 0 mF ecm~2 and Ry, = 10* Q.cm?. We clearly observe that the
amplitude of the signals is smaller than in the RS. More generally, this amplitude
decreases when R, increases, as expected.

We now focus on the capacitor effect by taking R, very large. Figure 41| presents
the ECG signals obtained with R, = 10°° Q cm? and C, = 1072 mF cm 2. We ob-
serve that the capacitive term induces a relaxation effect and distorts the signal. In
particular, the T-wave is inverted in all the ECG leads and the S-wave duration is
larger than for the RS. At last, Figure @ shows that for very small values of C, the
amplitude of the ECG is also very small. This can be formally explained by the fact
that, in this case, condition (TT3)); approximately becomes 6tVur-n =0 on X: no
heart information is transferred to the torso, leading to very low ECG signals.



6 Numerical investigations with weak heart-torso coupling

In this section, we investigate the ECG sensitivity to the time and space discretiza-
tions and to the heart and torso model parameters. To carry out these studies at a
reasonable computational cost, we consider the heart-torso uncoupling. Although
we have noticed (in section [5.1)) that uncoupling may affect the ECG accuracy in
some cases, we can expect that the conclusions of the sensitivity analysis remain
still valid under this simplification.

6.1 Time and space convergence

In this section, we are not interested in the convergence of the whole solution of the
RM with respect to the space and time discretization parameters, but rather in the
convergence of the ECG which is here considered as the quantity of interest.

6.1.1 [6.1]a) Time convergence

In Figure[43] we present the first ECG lead (lead I) obtained for three different time-
step sizes 6t = 0.25, 0.5 and 2 ms. The [2-norm of the relative difference with the
result obtained with 6¢ = 0.25 ms is 10 % when 6¢ = 2 ms and 2.0% when 6t = 0.5
ms.

025ms

05ms

0 100 200 300 400 500 600

Fig. 43 Comparison of three simulations of ECG (lead 1) with three different time steps: 2, 0.5 and
0.25 ms. The computation is performed using the RS parameters only the time step is changed.



6.1.2 [6.1}b) Space convergence

Three different levels of refinements are considered for the heart and the torso
meshes, as shown in Table 5} The finite element meshes used in the RS are the
R2. In Figure 4] we report the first lead of the ECGs obtained for these simulations
using a time step 0t = 0.25 ms.

Meshes| Heart nodes |4 (cm)|Torso nodes|Total number of tetrahedra
R1 13 000 0.30 56 000 370 000
R2 80 000 0.15 | 120000 1 080 000
R3 236 000 0.11 | 232000 2 524 000

Table 5 Three different levels of refinement for the computational heart and torso meshes (rounded
off values), h denotes the discretization parameter.

0 100 200 300 400 500 600

Fig. 44 Comparison of three simulations of ECG (lead I), using three different levels of mesh
refinement (see Table [5). The computation is performed using the RS parameters only the space
discretization parameter is changed.

Although the whole solution might not be fully converged within the heart, we
can observe that the quantity of interest — namely the ECG — is almost unaffected by
the last refinement. Therefore, in a goal-oriented refinement framework, the solution
may indeed be considered as converged.



6.2 Sensitivity to model parameters

In this section, we study the sensitivity of ECG to some model parameters. This is
fundamental step prior to addressing its estimation (see e.g. [BFGZ08al]) using data
assimilation techniques.

Suppose that o, 0, ..., 04, are parameters the ECG depends upon, i.e.

ECG =ECG(0y,00,...,04).
The ECG sensitivity to parameter ¢; can then be approximated as

ECG(ay,00,....(1+¢&)q;,...,0) —ECG(Qy, 0, ...,
B ECG(au, 0, .., ap) ~ ZC! (L e)os, -, 0p) — PO %)

where € is a small parameter, in our case 107% < & < 107* gives a good ap-
proximation. Instead of do, ECG(1, 02, ...,0p) We consider the normalized value
@00, ECG(aiy, 0, ..., Op ), which allows to compare the sensitivity irrespectively of
the parameter scales. In the next paragraphs, we provide time evolution of this scaled
derivative, evaluated around the parameters used in the RS. Once more, for the sake
of conciseness, we focus on the first ECG lead.

6.2.1 Ionic model parameters

In this paragraph, we investigate the sensitivity of the ECG to the Mitchell-Schaeffer
parameters. In Figure we have reported the normalized derivatives with respect
tO Tin, Tout> Topen OF Tclose- The high ECG sensitivity to T, is clearly visible, par-
ticularly during the QRS-complex. The sensitivity to T,y is moderate both during
the depolarization and depolarization phases. As expected, the sensitivity to Tcjose 1S
only relevant during repolarization. Interestingly, the sensitivity to Topep s relatively
small. Therefore, this parameter may be removed (i.e. keep fixed) within an inverse
estimation procedure.

6.2.2 Bidomain model parameters

We first focus on the ECG sensitivity to the local myocardium conductivities: o,
o, o' and Gil. The corresponding normalized derivatives are given in Figure
During depolarization (QRS-complex), the ECG is mainly sensitive to transverse
conductivity (o}, ¢!). This can be due to the dominating transmural propagation of
the depolarization wave in the left ventricle (see Figure[I9|(left)). During repolariza-
tion (T-wave), on the contrary, the ECG shows approximately the same sensitivity
to all the local conductivities. We now pursue our sensitivity analysis, by consider-
ing the parameters Ay, and Cy,. The corresponding normalized derivatives are given

in Figure 47} We observe a strong sensitivity to both parameters during depolariza-
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Fig. 45 Normalized ECG sensitivity to T, Tout> Topen and Telose-
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Fig. 46 Normalized ECG sensitivity to the local myocardium conductivities: o., o, o! and Gil.
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Fig. 47 Normalized ECG sensitivity to Ay, and Cp,.

tion. Whereas, during the repolarization phase, the sensitivity is reduced. At last,
we investigate the sensitivity of the ECG to the initial activation in the heart (see
Appendix @.1.3). More precisely, we focus on the sensitivity to the activation an-
gular velocity %act The corresponding normalized derivative is reported Figure
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Fig. 48 Normalized ECG sensitivity to the activation angular velocity.

As expected, the ECG is strongly sensitive to this parameter, particularly during the
depolarization phase.

6.2.3 Torso parameters

We finally consider the sensitivity of the ECG to the torso conductivities o}, o2
and o}. Note that, in a heart-torso uncoupling framework, the corresponding three
normalized derivatives are linked by a linear relation. Indeed, from (89) and (98),
we have that, for all A € R, ut solves
div(AorVur) =0, in Qr,
UT =Ue, ON X,
AGTVM'I”HT = 07 on I—éxt.
In other words,
ur(Aoy, Aoy, A61) = ur(or, OF, OF).- (116)
Differentiating this relation with respect to A (and evaluating the resulting expres-
sion at A = 1) yields
O'—}&G%MT + G—P&U{EMT + O'r}ac%u"[ =0.
Thus, from (93), we obtain a similar relation for the normalized ECG derivatives:

G{QG%ECG - G%&GIT)ECG +01961 ECG = 0.

Figure [49] presents the normalized derivatives of the ECG with respect to the tis-
sue, lung and bone conductivities. This figure clearly shows that the ECG sensitivity
to the bone parameter (7{3 is negligible compared to its sensitivity to the tissue and
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Fig. 49 Normalized ECG sensitivity to o}, o2 and o*.

lung parameters. Thus, if we have in mind to limit the number of parameters to be
estimated, GTb can safely be fixed to the value used in the RS.

7 Conclusion

A fully PDE/ODE based mathematical model for the numerical simulation of ECGs
has been described. The electrical activity of the heart is based on the coupling of
the bidomain equations with the Mitchell-Schaeffer phenomenological ionic model,
including anisotropic conductivities and transmural APD heterogeneity. This sys-
tem of equations has been coupled to a generalized Laplace equation in the torso,
with inhomogeneous conductivity (bone, lungs and remaining tissue). A detailed de-
scription of the different algorithms used for the numerical solution of the resulting
ECG model has been also provided.

Our approach has several limitations: we did not consider the atria, which pre-
vents us from computing the P wave of the ECG; the cell model being phenomeno-
logical, it cannot handle complex ionic interactions; the effect of the blood flow on
the ECG was neglected; the geometry of the ventricles were simplified.

Despite the above mentioned limitations, we were able to compute a satisfac-
tory healthy 12-lead ECG, with a limited number a parameters. To the best of our
knowledge, this constitutes a breakthrough in the modeling of ECGs with partial dif-
ferential equations. Moreover, for pathological situations corresponding to a bundle
branch block and arrhythmia, our simulations have provided ECGs which satisfy
typical criteria used by medical doctors to detect these pathologies. This shows, in
particular, that our numerical model have some predictive features.

In a second part, we have studied the impact of some modeling assumptions on
the ECGs. The main conclusions of this investigation are the following:

1. As far as the general shape of the ECGs is concerned, heart-torso uncoupling
can be considered. The level of accuracy obtained with uncoupling is probably



sufficient in several applications, which may explain why this simplification is
so widespread in the literature. Nevertheless, our numerical results have clearly
pointed out that the amplitudes of the ECG signals obtained via uncoupling and
full coupling can significantly differ. We therefore recommend to carefully check
in each specific situations whether the uncoupling approximation is acceptable or
not.

2. In agreement with other studies, we noticed that cell heterogeneity and fiber
anisotropy have an important impact on the ECG and, therefore, cannot be ne-
glected.

3. The bidomain equations can apparently be safely replaced by the monodomain
equations without significantly affecting the ECG. Nevertheless, even with this
simplification, we point out that the transmembrane potential Vy, and the extra-
cellular potential u, still have to be solved simultaneously when the heart and the
torso are fully coupled. To be really attractive, the monodomain simplification
has therefore to come with the uncoupling approximation, which can affect the
ECG, as mentioned above.

4. We have proposed a new heart-torso coupling condition which takes into account
possible capacitive and resistive effects of the pericardium. We did not find in the
literature any evidence of these effects and our results show that it does not seem
necessary to include them in order to get realistic healthy ECGs. Nevertheless,
these coupling conditions might be relevant in some pathologies affecting the
pericardial sac and the simulations we provided to illustrate these effects might
be useful for future works.

5. At last, a sensitivity analysis has shown that the most critical parameters of the
bidomain model are Cp,, A, the angular velocity of the activation wave and the
transverse conductivities o] and o}. As regards the ECG sensitivity to the ionic
model parameters, we have noticed a extreme sensitivity of the QRS-complex
to the parameter 7;, and a high sensitivity of the T-wave to the parameter 7 jse.
Moreover, we have also observed that the ECG sensitivity to the torso conduc-
tivity parameters is less significant than to the heart model parameters.

To conclude, our main concern during this study was to build a model rich enough
to provide realistic ECGs and simple enough to be easily parametrized. In spite of
its shortcomings, the proposed approach essentially fulfills these requirements and
is therefore a good candidate to address inverse problems. This will be investigated
in future works.



Chapter 6

Decoupled time-marching schemes in
computational cardiac electrophysiology and
ECG numerical simulation

In order to decouple the computation of the unknown fields (ionic state, transmem-
brane potential, extracellular and torso potentials) in both isolated heart problem
(T8) and heart-torso problem (24)-(26), we propose in this chapter first order semi-
implicit time-marching schemes and a Robin-Robin treatment of the heart-torso
coupling conditions. For the isolated bidomain system, we show that the Gauss-
Seidel and Jacobi like splittings do not compromise energy stability; they simply
alter the energy norm. Time-step constraints are only due to the semi-implicit treat-
ment of the non-linear reaction terms. Within the framework of the numerical sim-
ulation of electrocardiograms (ECG), these bidomain splittings are combined with
an explicit Robin-Robin treatment of the heart-torso coupling conditions. We show
that the resulting schemes allow a fully decoupled (energy) stable computation of
the heart and torso fields, under an additional mild CFL like condition. Numerical
simulations, based on anatomical heart and torso geometries, illustrate the stability
and accuracy of the proposed schemes.

This chapter is part of a joint work with M.A. Ferndndez, it is reported in [FZ09].

1 Introduction

Computational models of cardiac electrophysiology typically incorporate the cell
membrane activity and the intra- and extracellular components of cardiac tissue
by means of the bidomain model (see e.g. [SLCT06, [PBCO3]). This mathemati-
cal model can be formulated as a three-field system (ionic state, transmembrane and
extracellular potentials) coupling a non-linear reaction-diffusion equation, an ellip-
tic equation and a non-linear system of ODE (alternative formulations are discussed
in [HHLR94| [PS02]).

The rapid dynamics of the ODE system, acting on the reaction terms, lead to
the presence of a sharp propagating wavefront, which often requires fine resolu-
tions in space and in time. As a result, fully implicit time-marching is extremely
difficult to perform since it involves the resolution of a large system of non-linear
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equations at each time step (see e.g. [HHLR94, IBELO3l MCO04, MPQ9]). Attempts
to reduce this computational complexity (without compromising too much numeri-
cal stability) consist in introducing some sort of explicit treatment within the time-
marching procedure. For instance, by considering semi-implicit described in chap-
ter E] (see e.g. [SLTO1l, ILGTO3, ICFP04, IATPO6, BFGZO7, [EBOSal]) or operator
splitting (see e.g. [KB98| [SLT05 [VWdSPT08]) schemes. All these approaches un-
couple the ODE system (ionic state and non-linear reaction terms) from the elec-
trodiffusive components (transmembrane and extracellular potentials). Other works
[SLTOTl, [CGTO03, [ATP06, [VWASPT08, [PDR"06] propose a decoupled (Gauss-
Seidel like) time-marching of the three fields.

In this chapter we go further in the investigation of this kind of decoupling tech-
niques, by providing a general energy based stability analysis that covers both the
Gauss-Seidel and the Jacobi like approaches. In particular, we show that these elec-
trodiffusive splittings do not compromise the stability of the resulting scheme. They
simply alter the energy norm and time step restrictions are uniquely dictated by the
semi-implicit treatment of the ODE system and the non-linear reaction terms.

In the second part, we propose to extend these time-marching techniques to the
numerical simulation of the ECG, namely, the forward problem of cardiac elec-
trophysiolgy (see e.g. [LBGT03]). The bidomain equations have then to be cou-
pled to a generalized Laplace equation, describing the electrical potential within
the surrounding torso tissue. The heart-torso coupling is enforced through stan-
dard interface conditions, ensuring a perfect electrical balance (see e.g. [KN94,
PBC05, ISLCT06]]). This results in a coupled four-field problem (ionic state, trans-
membrane, extracellular and torso potentials) coupling a non-linear system of
ODEs, a non-linear reaction-diffusion equation and two elliptic equations (see e.g.
[LBG™03}ISLCT06]).

Traditionally, the heart-torso coupling has been treated using two different ap-
proaches (see e.g. [LBGT03]). The so called heart-torso uncoupling approximation
(see Chapter section or [PDGO03}ILBG™03,[BCF09])) uncouples the heart and
torso problems by neglecting the torso-to-heart electrical feedback (i.e. the heart
is isolated). Although this approach is very appealing in terms of computational
cost, it can compromise the accuracy of the corresponding ECG signals (see e.g.
[LBGT03, PBCO3, BCF"09]). The second approach, the so called heart-torso full
coupling, treats the heart-torso interface conditions in a fully implicit fashion and,
therefore, requires the resolution of a large heart-torso system at each time step (see
e.g. [SLTOT}, [LGTO3, [PBCO03} BCET09]). To the best of our knowledge, none of the
current approaches is able to provide accurate ECG signals (i.e. close to heart-torso
full coupling) with a decoupled computation of the extracellular and torso poten-
tials.

In this chapter, we introduce a series of time-marching schemes for ECG numer-
ical simulation involving a fully decoupled computation of the ionic state, the trans-
membrane potential, the extracellular potential and the torso potential. The main
idea consists in combining the above mentioned Gauss-Seidel or Jacobi like bido-
main splittings, with an explicit Robin-Robin treatment (derived from [ACEQ9|]) of
the heart-torso coupling. An energy based stability analysis shows that the proposed



schemes are stable under and additional mild CFL like condition. Note that, since the
time discretization of the two (quasi-static) elliptic equations does not produce nu-
merical dissipation, conventional explicit Dirichlet-Neumann heart-torso coupling
might lead to numerical instability.

The remainder of this chapter is organized as follows. In the next section we
briefly recall the coupled system of equations describing the electrical activity of
the heart and its interaction with the surrounding torso tissue. The time discretiza-
tion of the bidomain equations is addressed in section §3] using Gauss-Seidel and
Jacobi like eletrodiffusive splittings. The stability of the resulting schemes is ana-
lyzed by means of energy arguments. Section §4]is devoted to the discretization of
the heart-torso system. The schemes analyzed in section §3|are then combined with
a specific explicit Robin-Robin treatment of the heart-torso coupling. The energy
based stability of the resulting schemes is investigated. Numerical evidence is pro-
vided in section §3| using realistic heart and torso geometries. A summary of the
results and some concluding remarks are given in section §6

2 Mathematical models

This section contains standard material (see e.g. [SLCT06, Chapter 2]). We intro-
duce the notation and the coupled system of equations commonly used to model the
electrical activity of the heart and its interaction with surrounding tissue (extramy-
ocardial regions).

2.1 Isolated heart

The bidomain equations, originally derived in [Tun78]], are the most widely accepted
mathematical model of the macroscopic electrical activity of the heart (see e.g. the
monographs [SLCT06,[PBC03])). This model is usually formulated in terms of three
variables: the transmembrane potential Vy,, the extracellular potential u. and the
ionic state w (possibly vector valued). These space and time dependent variables are
defined in Qy x (0,7), where Qy and (0,7) denote, respectively, the heart domain
and the time interval of interest.

The governing equations consist of a coupled system of ODE, a nonlinear
reaction-diffusion equation and an elliptic equation, with appropriate boundary and
initial conditions (see e.g. [SLCT06, PBCO3]):



Iw+g(Vm,w)=0, in Qyx(0,T),
(117)

Xm9 Vi + Lion(Vin, w) — div(0iVVin) —div(oiVue) = Lpp, in  Qu x (0,7),
(118)

—div((0j+ 0¢)Vue) —div(oiVVy) =0, in Qux(0,7),
(119)

6iVVn-n+06iVue-n=0, on X x(0,7),
(120)

6.Vu.-n=0, on Xx(0,T),
(121)

Vin(x,0) = VO(x), w(x,0)=w(x), VxeQu (122

def . . .
Here, Xm = AnCy where Ay, is a geometrical quantity, Cy, denotes the membrane

capacitance and tensors o and o, represent, respectively, the intra- and extracel-

L def , . .y
lular conductivities. The term Lgp (Vin, w) = Amiion(Vin, w) denotes the ionic current

across the membrane and I, a given external current stimulus. The explicit expres-
sion of functions g and ij,, depends on the considered cell ionic model (see e.g.
[SLCT06,[PBCO3] and the references therein). At last, n stands for the outward unit

normal to X def dQy (see Figure | ,and Vrg, w9 are given initial data.

The boundary conditions (T20)-(T21) state that the intra- and extracellular cur-
rents do not propagate outside the heart. While (T20) is a widely accepted condi-
tion (see e.g. [Tun78l KN94, [PBCO3] ISLCT06]), the enforcement of (T21) is only
justified under an isolated heart assumption (see [SLC™06, PBCO03])). The coupled
system of equations (T17)-(122) is often known in the literature as isolated bido-
main model (see e.g. [CFP04, [CFP04, ISLC"06]). The interested reader is referred
to [CES02! BKO6, BCP09, [Ven09] for the mathematical analysis of problem (IT7)-
(122).

The choice of the formulation (T17)-(122) is motivated by the decoupling time-
marching schemes introduced in section §3] Other formulations of the bidomain
equations and their impact on the performance of the algebraic solvers have been
discussed in [HHLR94, [PS02]. A recent review of numerical methods for the bido-
main equations can be found in [LSHT09].

Remark 1. The complexity of (IT7)-(I22) can be reduced by using, instead of (TT8)
and (T20), the so-called monodomain approximation:

im0 Vin + Lion(Vin, w) —div (6VViy) = Lypp, in  Qu, (123)
oVVn-n=0, on X,

where ¢ & oi(0; + 0.)'oe is the bulk conductivity tensor (see e.g. [LHOI|

CNLHO04! [CFP04, PDR T 06]). Note that (T23)) decouples de computation of Vy, from
that of u.. Under the isolating condition (T21)), (T23)) can be interpreted as the zeroth-



order approximation of and with respect to a parameter, 0 < € < 1,
which measures the gap between the anisotropy ratios of the intra- and extracellu-
lar domains (see [CNLHO4, I(CFP04] for details). Although several simulation anal-
ysis (see e.g. [CNLHO4, PDR"06])) suggest that the monodomain approximation
may be adequate for some propagation studies in isolated hearts, it cannot be ap-
plied in all situations since it neglects the extracellular feedback into V;, (see e.g.
[EGRO00, [CNLHO04, [PDR " 06] and Remarkbelow).

2.2 Coupling with torso: ECG modeling

The myocardium is surrounded by a volume conductor, Qt, which contains all the
extramyocardial regions (see Figure [50). As a matter of fact, ECG signals moni-
tor the electrical activity of the heart from potential measurements at the torso skin
surface I The torso volume is commonly modeled as a passive conductor (gen-
eralized Laplace equation), electrically coupled to the heart across the heart-torso
interface X. The resulting coupled system can be formulated in terms of Vy,, ue, w

Fig. 50 Two-dimensional geometrical description: heart domain 2y, torso domain Qr (extramy-
ocardial regions), heart-torso interface X and torso external boundary I.

and the torso potential ut, as follows (see e.g. [SLCT06, [PBCO3])):



Ow+g(Vm,w)=0, in Qux(0,T),

(124)
Xm9 Vi + Lion(Vin, w) — div(0iVVi) —div(oiVue) = Lpp, in  Qux x (0,7),
(125)
—div((0j+ 0¢)Vue) —div(oiVVy) =0, in Qux(0,7),
(126)
7diV(GTVuT) =0, in QX (O,T),
(127)
orVur-nr =0, on Iy x(0,T),
(128)
6iVVn-n+06iVue-n=0, on X x(0,7T),
(129)
ur =ue, on Xx(0,7),
(130)
6c.Vu.-n=—orVur-ny, on Xx(0,T),
(131)

Vin(x,0) = Vo(x),  w(x,0) =w’(x), Vx€ Qy. (132)

Here, ot stands for the conductivity tensor of the torso tissue and nt for the outward

unit normal to the external boundary Iy def dQ1\ X (see Figure .

The boundary condition (I28) states that no current can flow from the external
torso surface Iy, whereas (I30)-(I31)) enforce a perfect electric balance between
the heart and torso domains (see e.g. [Tun78, [KN94, PBCO05| ISLC06]).

The coupled system of equations (124)-(132)) is often known in the literature as
full bidomain or coupled bidomain model (see e.g. [CNLHO4, ISLCT06]). It can
be considered as the state-of-the-art in the modeling of the ECG or, equivalently,
the forward problem of cardiac electrophysiology (see e.g. [LBG' 03, [PBC03,
SLCT06]]). The interested reader is referred to chapter [4| or [BEGZ08b] for the
mathematical analysis of problem (124)-(132), and to [LBG"03] (see also Chap-
ter[3] section 3] for a review of the numerical methods.

Remark 2. A common approach to reduce the computational complexity of (124)-
(132)) consists in uncoupling the computation of (w,Vy,ue) and ut, by neglecting
the electrical torso-to-heart feedback (see e.g. [CNLHO04, PDGO03},ILBG03])). Thus,
the coupling condition (37 is replaced by

oe.Vu.-n=0, on X, (133)

which amounts to work with an isolated bidomain model, as described in the previ-
ous subsection. Thereafter, the torso potential ut is recovered by solving with
boundary conditions (128)-(T30). Although this approach is very appealing in terms
of computational cost, numerical evidence has shown that it can compromise the



accuracy of the ECG signals (see e.g. [LBG™ 03|, PBC05, BCF"09] and the numer-
ical study of subsection §5.3). The heart-torso uncoupling approximation is often
further simplified by replacing the interface condition (I30) by a (multi-) dipole
representation of the cardiac source (see e.g. [Gul88| [Hui98l).

Remark 3. The monodomain approximation (123) can be combined with the heart-
torso uncoupling framework of Remark(see e.g. [Hui98, PDGO03LIBCF"09]). This
yields a simplified mathematical model which allows a fully decoupled computation
of Vin, ue and ur. However, as noticed in Chapter[5]section[5.2] (see also [CNLHO04]),
without the uncoupling assumption the monodomain approximation becomes

Am0:Vin + fion(Vin, w) —div (6VVpy) = Lypp, in  Qu,

(134)
oVVy-n=—-uc.Vu.-n, on X,

where 0 < u < 1 is a dimensionless parameter related to the local conductivities.
Note that in (I34) Vi, and u are still coupled. Therefore, under the full heart-torso
coupling (T30)-(I31), the monodomain approximation does not reduce the compu-

tational complexity with respect to (124)-(132).

3 Decoupled time-marching for the bidomain equation

In this section we analyze some time-discretization schemes for the isolated bido-
main system (I17)-(I22). The main feature of the analyzed schemes is that they all
allow a decoupled (Gauss-Seidel or Jacobi like) computation of Vi, and u., without
compromising stability.

3.1 Preliminaries

In what follows, we will consider the usual Lebesgue and Sobolev spaces, L™ ()
and H™(Q) respectively (m > 0), for a domain 2 C R3. Then, for a given X C Q2
(with meas(X) > 0), we define Hy () as the subspace of H' () with vanishing
trace on X. The L*(2)-norm is denoted by || - [|o.o and the vanishing mean value
subspace of L?(Q) by L3(£).

Problem (TI7)-(122) can be cast into weak form as in chapter [4] (see e.g.
[BFGZ08b]): for t > 0, find w(-,¢) € L*(2u), Vin(-,1) € H'(Qq) and uc(-,1) €
H'(Qu)NL3(2y), such that



/Q (Gt g (Vo)) =0,
%m/QH (afvm+1ion(vm7w))¢+/g

/(Gi+Ge)Vue-Vl[/+/ o;VVy-Vy =0,
Qy Qy

GiV(Vm—i—ue)-V(p:/Q Lpp,  (135)
H

H

for all (é,d)ﬂ[/) S LZ(QH) x H! (.QH) X (Hl(.QH) QL%(.QH)).

3.2 Time semi-discrete formulations: decoupled time-marching
schemes

Let N € N* be a given integer and consider a uniform partition {[f,,%+1] }o<n<n—1,

. f o . o f
with £, © n7, of the time interval of interest (0,T), with time-step T L /N.For a

given time dependent function X, the quantity X" denotes an approximation of X (¢,,)

and D X" & (X" — X"~1) /7 the first order backward difference. Moreover, we set

def
Lipp = Lapp (tn, -).
We propose to time semi-discretize (T33) by combining a first order semi-implicit
treatment of the ionic current evaluation with an explicit (Gauss-Seidel or Jacobi
like) treatment of the coupling between Vi, and u.. The resulting schemes can be

cast into a common frame as follows: For 0 <n <N — 1, we solve

1. Tonic state: find w"*! € L(Qy) such that
/ (Dew™ ! +g (VW™ 1))E =0 (136)
Qy

for all & € L(Qy).
2. Transmembrane potential: find V"' € H'(Qy) such that

tn [ DI+ / GV Vg
QH QH
+/ O'iVu§~V¢:/ (Ifggl—lion(Vﬁ,w”“))(p (137)
Qy Qy

forall ¢ € H'(Qp).
3. Extracellular potential: find u"*! € H'(Qy) ML (2n),

/(Gi+ce)Vug’+1~Vy/+/ o;VV: - Vy =0 (138)
Qu o

for all y € H'(Qu) NL(2n).



Note that the non-linear system and the ionic current evaluation Lo, (V/, w"+1)
in are decoupled from (T37)-(T38). This semi-implicit treatment is quite pop-
ular in the literature (see e.g. [SLTO1} [LGTO3| ICFP04, IATP06, BFGZ07, [EB0O8al).
For (u, V%) = (u*!,V/+1), the unknown potentials V! and u*! are implicit cou-
pled and, therefore, equations (I37) and (I38)) have to be solved simultaneously (see
e.g. [KB98| [SLT05] [EB08a, [EB08a, BCEF09]). The energy based stability analysis
of this semi-implicit scheme, using first and second order time discretizations, has
been recently reported in [EBO8a].

On the contrary, for (uX, V%) = (u?, V1) or (uf, V) = (u, V1), the electrodif-
fusive coupling becomes explicit and therefore and (T38) can be solved sep-
arately: either sequentially (Gauss-Seidel) or in parallel (Jacobi). Similar Gauss-
Seidel like splittings have been proposed and successfully applied in [SLTO1}
LGTO03l, [ATP06, VWdSPT08]. The theoretical stability of the schemes is, however,
not established therein. To the best of our knowledge, the Jacobi like splitting has
not yet been considered in the literature.

The energy based stability analysis of these time splitting schemes is performed
in the next subsection.

Remark 4. The Gauss-Seidel and Jacobi like electrodiffusive splittings allow a de-
coupled computation of Vy, and u. without the need to resort to monodomain ap-
proximations (see Remark [T).

3.3 Stability analysis

For the stability analysis below, we shall make use of the following simplifying
assumption (see [EBO8al Section 3.2.2] and Remark 3.1 therein) on the structure of
the ionic functions g and figy:

Iion(vm )

W CI(|Vm|+|W|)7
8(Vin,w)

(139)
Cg(|Vm|+|w\)

<
<

for all Vi, w, and we set o def 1+3C+Cg and B d:efC1+3Cg.
The next theorem states the energy based stability of the time-marching schemes

(136)-(138), in terms of u} and V.

Theorem 1. Assume that (139) holds and that the conductivity tensors 0,0 are
symmetric and positive-definite. Let {(w", V2. ul)}N_, be solution of (136)-(138)

and C(T, o, B) &ef exp (T/(1 — tmax{a,B})). Then, under the condition

1

T< m, (140)

there follows:



o For (uf, Vi) = (ug™,Vrh):

n—1

n—1 1 |
916,00+ 2 [ Vit 16, 0 +2 D Tl 0 Vi g #2370 VOV 4 ) [ g,

m=0 m=0
n—1
<C(T,a,B) <HWOH3,QH +Xm||VI?1H§’QH+ZTHI$glHéQH> , (141)
m=0

with 1 <n <N.
o For (uf, Vi) = (ud,Virth):

W12 0 + 2 |VAI o, + 7|02 Vet
0,2y m m0,Qy 1 €110,Q2y

n—1 n—1
12 ol vt |, + S elof Vv a2,

| n—1
<C(T,a.B) (HW"HégH + 2m[Vi6. g + 7107 VIl 0+ D Tl Hﬁ,gH) :

m=0
(142)
with1 <n <N.
o For (ug, V) = (ug,Vin):
1 1
w110 0y + 201Vl 0 + 7l 05 Vil .0, + |07 Vil
n—1 1 1
23 ot Vit [, <0108 (|1 g, + 20l V2l + 5l TV
m=0

1 n—1
“HGfW(e)Hé,QH+ZTH1§$1H§,QH>v (143

m=0

with1 <n <N.

Proof. Under assumptions (I39) and (T40), the stability estimate (I4T), for the
monolithic case (3, V) = (u*!, V1), can be straightforwardly derived from the
analysis reported in [EB08a] (see also [ThoO6al]). Therefore, we only detail here the

proofs of (142) and (T43).

Let first consider the Gauss-Seidel like decoupling (1%, V%) = (u?, Vi+1). By test-

ing (136)-(138) with (w1, v+l 42+1) and after summation of the resulting ex-
pressions we have:



1 1
5 (0 1 = 172 0 )+ 5 (17 11 = IVt ) + 102 Vi [ g,

1
eIVt HOQH—F’F/ GV (! — ) vyt
, o,

I

<7 /Q (It = Lion (Vi W) Vit — 1 /Q g(Va w )Wt (144)
H H

L

1
where the square roots Gé,cf are well defined since 0j, 0. are symmetric and
positive-definite tensors (see e.g. [Ste80]). We now provide appropriate bounds for

terms /; and I>.
As regards the first term, we have

L :T/ oiV(u! —uly. V(Vrﬁﬂ—i—uZH)—i—/ o V(' — ) vyt
o Q

H

1 1
> 2o Vi =) g, — 507 VAT )3
1 T 1
+3 (o vat '} g, =t vutll g, ) + 30t V0"~ g,
1 1 T 1
=5 (ot v 1 g, = oVt g, ) = SI0Rv 07 ) g,

(145)
On the other hand, from (I39), for the second term can be bounded as follows

T T 7C,
L *5||12§3H§,Q; +5||Vn’§“1|§,gﬂ +7’ (3||V£+‘|\§,QH + Hw"“||§,gﬁ)
TC,
5 (V1.0 +3110.04)
n n 2 T n 2
fm;m% S 0436+C) [Vt [ 0y + 5 (G4 3C) [ [ 0

o B
As a result, inserting (T43]) and into (144), yields

(146)

1 X 1
S (I 1 o= 191150 ) + 5% (111 g = Vil ) 02 V1 g
T 1 1
2oVt 4wt G o, + QMVHW%—wwmmg
(45 2
e 6 + SV 16 g 1171115

T
<l

so that, replacing index n by m and summing over 0 < m < n— 1, we have



n||2 v 2 %V n||2 2’!7] %V m+11|2
[Jw HO,QHJ'_XmH mHo,QH'i'THGi “eHo,QH+ ZTHGe Ue HO,QH

m=0
S ST ST 0/12 0|2 59,02
+_tllo? VIR + Do g < 1910 0 + 2 Vallo o, + Tllo? Vil 0,
m=0
n—1 5 n—1 ) n—1 5
+ 2Tl lo.a + @V llo.a, + B2l o0
m=0 m=0 m=0

Estimate (I42) then follows by applying Gronwall’s lemma (see e.g. [HR90a,

Lemma 5.1]) under condition (T40).
Finally, let consider the Jacobi like decoupling (uZ, Vi) = (uZ, V). In this case,

estimate (T44)) becomes
1 Xz 1
S (I 1 o = 191150 ) + 5% (V¥ 1 4 = Vil ) 0 V1 g

1
+THG§V(V£H+ug’“)H(2).QH+11+T/ oiV(VE vy vt < L. (147)

Qy

L

The new term I3 can be bounded similarly to /j, that is,

13:1'/ O'iV(VIﬁ—Vlfl“)-V(Vﬁ“—kuﬁ“)—&—/ o V(v —yny . vyl
Qu Q

H

T 1 2 T 1 2
> Zot VR =Va ) g, ~ 5ot VR
T 1 1 T 1
#3 (102973 0, ~ o Wil g, ) + 50 VO =V

T 3 n 3 n T 3 n n
5 (ot w1 g, = 07Vl 0, ) = SRV ) g,
(148)

Therefore, by inserting (143), (146) and (T48) into (147), there follows that
1 X 1
5 (113 = 11915 ) 57 (171110 = V110 ) 7102 Vi [ g,
T L 1 T 1 1
3 (lot v o, = 029l g, )+ 5 (102 v0 1 g, ~ o Vi )
T T (45]
L s L Wl

Estimate (T43) then holds, under condition (T40), by replacing index n by m, sum-
ming over 0 <m < n—1 and applying Gronwall’s lemma. This completes the proof.

We conclude this section with a series of remarks.



Remark 5. Theorem |l| shows that electrodiffusive Gauss-Seidel and Jacobi split-
tings are energy stable under condition (T40), as for the unsplit case (u?,Vy) =
(u+1 vty (analyzed in [EBOS8al), but with slightly altered energy norms. As a
result, stability is not compromised.

Remark 6. The proof of Theorem [I]does not depend on the time discretizations con-
sidered in (I36) and (I37). Indeed, we do not make use of any numerical dissipation
produced by the scheme, apart from that is directly provided by the splitting. There-
fore, the backward Euler quotients, D;w" ! and D;V/*1, can be safely replaced by
a second order backward difference formula, and perform one correction (see e.g.
[Ste78,ISMO00]) to recover overall second order accuracy.

Remark 7. The above stability result can be adapted, with minor modifications, to
the case (u%, V) = (u2+1, V"), The full Jacobi splitting, obtained after replacing
Lon (V2w 1) by Lon (V2 w") in (T37)) could also be considered.

Remark 8. Theorem [I] holds also for the fully discrete counterpart of (I36)-(T38)
obtained by discretizing in space using finite elements (see subsection §4.T)).

4 Decoupled time-marching for ECG numerical simulation

In this section, we introduce fully discrete schemes for the heart-torso system (124))-
(132), allowing a decoupled computation of the transmembrane, extracellular and
torso potentials. The main idea consists in combining the bidomain splittings of the
previous section, with a specific explicit Robin-Robin treatment of the heart-torso

coupling conditions (T30)-(T31).
4.1 Preliminaries

Problem (124)-(132) can be cast into weak form as follows (see e.g. [BEGZO08bI)):
fort >0, find w(-,t) € L*(2n), Vin(-,t) € H (Qn), ue(-,1) € H (Qu) NLE(Q2u) and
ur(-,t) € H'(Qr) with ue(-,t) = ur(-,) on X, such that

/Q ] (Aw+ g(Vin,w)) & =0,
Xm/QH (8,Vm+lion(vm,W))¢+/Q

/ (Gi+Ge)Vue~Vl[/+/ GiVVm-VI[I—I—/ orVur-V{ =0,
Qu Qy Qr

GiV(Vm-i-ue)'Vq) :/ Iapp¢,
Qy

H

(149)
for all (é,(P, v, C) S LZ(QH) XHI(.QH) X (Hl (QH)QL%(QH)) x H! (.QT) with y =
ConZX.



Assume that Qy and Qr are polygonal domains and let { Z41 4 fo<n<i ({ 4 }o<h<1)
be a family of triangulations of Qg (resp. Qr) satisfying the usual requirements of
finite element approximations (see e.g. [EGO04]]). The subscript & € (0, 1] refer to
the level of refinement of the triangulations. For the sake of simplicity and without
loss of generality, we assume that both families of triangulations are quasi-uniform
and that they match at the heart-torso interface X. We define Xy, (resp. Xt,) as
an internal continuous Lagrange finite element approximation of H'!(Qy) (resp.
H! (2r)). We also introduce the standard finite element (heart-to-torso) lifting oper-
ator £, : Xup — Xtp ﬁHll—eXl (Qr), such that £,y = y on X and %,y = 0 on Iy,
for all y € Xy ,. Note that we have the direct sum decomposition

{(w.0) eXunxXrp: Yz =t ={(v.-4V) : yeXun}a{(0,0): ¢ € X1, NHy(Qr)}.
(150)

In the stability analysis below, we shall make use of the following standard discrete

trace-inverse inequality (see e.g. [ThoO6al):

C
“IMIOK Vv € Xr, (151)

IVI15.0x <
for all K € J7,, and with C; > 0 a constant independent of the discretization pa-
rameter i (but that might depend on the polynomial order).

By combining the semi-implicit time-marching schemes of section §3| with a
finite element discretization in space, we can derive from (149) the following fully
discrete heart-torso scheme: for 0<n<N-1, find w € Xy, VI € Xuy,

utl e X OLZ(.QH) and u le Xt with u%“ =u*! on X, such that

/ (D n+1+g( n n+1))§ 0
Qq

(152)
xm/ DTV£+1¢+/ GiV(VIngl‘FMé)'V(P:/ I:pJBI 10n(Vn n+l))¢’
Qy Qy Qy
(153)
/ (oi+ae)vu2+1-vw+/ civvnﬁ.vw+/ orVuit!.v¢ =0,
'QH QH QT
(154)

forall (§,0,v,8) € Xupn X Xup % (Xun NLE(2n)) X X1, with § = y on X. Equiv-
alently, using (I30), the heart-torso subproblem (I54) can be split into two coupled,
torso (Dirichlet) and heart (Neumann), subproblems as follows:

e Find u’%“ € Xt j, with u’T'+1 =u*! on Z, such that

/ orVul.v¢ =0 (155)
Qr

forall { € X7, with { =0on X.



e Find u/*! € Xy, NL3(Qn) such that

/ (G;+Ge)Vul ! Vy/+/ GiVVr;-Vy/:—/ orVult™ V.4, y (156)
Qy Oy Qr

for all y € Xu,n OL(Z)(.QH).

Remark 9. The residual term in the right hand side of (I56) amounts to enforce the
Neumann condition (I31)) in a variational consistent fashion.

Despite the Gauss-Seidel and Jacobi splittings allow a decoupled solution of
(T52) and (T53), the heart and torso potentials «’*! and "' are still implicitly
coupled. Therefore, problems (I53) and (I56) must be solved simultaneously: ei-
ther monolithically, after assembling of (I34) (see e.g. [SLTOI} [LGTO03| [SLT05L
VWASPT08]) or, in a partitioned fashion, by sub-iterating between them as in Chap-
ter section [3| (see also [BP02, BCE09]). Note that, since the (quasi-static) time
discretizations (I53) and (I56) do not generate numerical dissipation in time, the
naive Dirichlet-Neumann explicit coupling, obtained by enforcing

' =u? on X,
in the torso subproblem (I33), might lead to numerical instability.

In the next subsection, we introduce an alternative heart-torso splitting, based on
Robin-Robin transmission conditions, which remains stable under a mild CFL like
condition.

4.2 Fully discrete formulation: decoupled time-marching schemes

We propose to combine the decoupling techniques introduced in section §3| with the
following explicit Robin-Robin splitting, derived from [ACFQ9]| (see also [BF09]),
of the heart-torso coupling:

o.Vul T ng 12 Yo U = —orVilk onr + L= Yo uf, on X,
h h 157
YOt nt1 YOt i1 (157

GTVu”“ nt+ — n n+ —GTVMT nr+ — 7 ”+ , on X

where 7 > 0 is a free Robin parameter, to be specified later on, and o is such that
OT|x = ol.

Remark 10. We have assumed, without loss of generality, that the torso conductivity
tensor is isotropic on the boundary, OT|s = o/, and that o; is constant.

Thus, the resulting schemes read as follows: for 0 <n < N — 1, we solve:

1. Ionic state: find w"*! € Xj, such that



/ (Dew™ g (Ve w ) E=0 (158)
Qy

forall & € Xj,.
2. Transmembrane potential: find V"' € Xj, such that

an | DI04 /

oivvg“~v¢+/ o;Vu-Vo
Qu Qy

Qy

:/Q (I — Lo (VW™ 1)) @ (159)
H

for all ¢ € X,.
3. Extracellular potential: find u/*! € X), such that

/ (Gi+oe)Vu2+l~V1//+/ oivv;-vw+@/ug+1w
o h Js

L o (160)
z—/GTVu’T'~nTW+%/u%yI
b b
for all y € Xj,.

4. Torso potential: find u™! € X,

/ chugﬂ.v§+%/u¢1§:/oTvu'T’.nTng%/u{;“C (161)
or b b b

for all { € Xj,.

In contrast to (152)-(154)), the cardiac subproblem (I38)-(T60) can be solved in-
dependently of the torso subproblem (I61). In particular, the choices (uf,Vy) =
(U, Vi) or (ug, Vi) = (ul, V) lead to a fully decoupled computation of w"*!,
Vol oyt and Wit In other words, the four subproblems (T58)-(T61)) are decou-
pled and can be solved sequentially.

The energy based numerical stability of these schemes is addressed in the next
subsection.

Remark 11. The choices (%, V) = (u, VA1) or (uf, V) = (u, V%) in (T58)-(T61)
allow a fully decoupled computation of w"*!, V2+1, 4" and 44" without the need
to resort to monodomain and uncoupling approximations (see Remark [3).

4.3 Stability analysis

We address here the energy based stability of the heart-torso coupling schemes
(T38)-(T61). Hence, in order to alleviate the exposition, we denote by E{ (1, V)
(resp. Ef (ug,Vr;)) the discrete bidomain energy at steps O (resp. n), arising in the



stability estimates provided by Theorem |1} For instance, in the case (u},Vy) =
(u, V1), we have

Ef (. Vi) < |w OHOQH+xm|\V°HogH+THGZVV°HOQH+fH62W°HOQH

B (2. ) |0, + s [Vl g + 70 Vi, 0 VG g
n—1

+2ZTHGCZV”mHHo Q
m=0

and similarly for the rest.
The next theorem states the main result of this section.

Theorem 2. Assume that the hypothesis of Theorem [l hold and that the torso con-
ductivity tensor o is symmetric and positive-definite. Let { (W", Vo ul, u’T') }N be

n=0
solution of (158)-(T61). Then for

v > 2GC, (162)

the following estimate holds

Efy (g, V) + ’“nmw+2kw$wwmm+2k ey — a5

m=0

n—1
(T, 0. B) <E3(u$,‘/n’i) + e D 5 +aforvadlfs g, +ZT||’a"£31||o,aH> :
m=0

(163)

with 1 <n < N. In particular, (163) ensures the energy based stability of the explicit
heart-torso coupling (I58)-(161) under the condition T = O(h).

Proof. Since the stability of the heart-torso coupling (T60)-(I61) does not depend
on the choice of u} and V5, we restrict ourselves to the case (uf, V) = (u?, V). The
rest of estimates can be derived in a similar fashion.

By testing (136)-(I38) with (£,6,,C) — 0w,V ut ! ut1) and after

summation of the resulting expressions we have:

1 X
5 (115 = 119715 00 ) + 57 (V2" 1 = Va1 ) efoivir g,

T}’GtH ntl n+1||(2)£

+ﬂéVMW+@wm%+ﬂﬁw#me

TYOq
+ ’;l‘/(u;“—u%)ug“—r/aTvu'%-nT(u';“—u{;“)Jrll+13 <hL. (164)
Xz z

n Is



Terms I, I and I3 have already been estimated in the proof of Theoremm SO we
only need to provide bounds for 14 and Is.
Term Iy is treated as follows (see [ACFQ9, BFQ9]),

=TI [t (=) + T ()
h r h X

> = 2t =g g — L e = o s
+ 2 (o s — Nl ) + S et = st
=T (16— e 5) — 2 " =gt [ -
On the other hand, using (T31), for the last term we have
15> = o0tV — T i -

TCi, L 2 TYOq 2
e YUHG%V”%HO,QT_ 4htH”gH_”%HH0£'

Therefore, by inserting (T43)), (T46), (T48), (163) and (166) into (T64) we get the

estimate

1
) (||WnJrl ||(2),QH

L Gy
w1 (ot} g, - otk g, ) + I i -

X
)+*m (||V"+1 15, O~ IVall§ QH) ‘*‘TH(’ezVMn+1 15 O

TYOt 2 2 i 1
+ o (H”%HHO,):*H”%HO,):)JFE <||Gi2VVn’1+1||%7QH||Gi2VVrﬁ||aQH>
T 3o ntl)2 3o.n2 1 et B oS!
+§ o7 Vug " 10,0, — 07 Vel 0, ) < 2Hlapp ||09H+*HV 15, QH‘F*” 115 Nore

Estimate (T63) then follows, under conditions (I62) and (T40), by replacing index
n by m, summing over 0 < m < n— 1 and applying Gronwall’s lemma, which com-
pletes the proof.

Remark 12. The above proof does not make use of any numerical dissipation apart
from that directly provided by the explicit Robin-Robin splitting (I57). Note that
this is particularly well adapted to the heart-torso coupling (124)-(132)), since the
quasi-static elliptic equations (123) and (T26) do not generate numerical dissipation
in time.

Remark 13. The flux terms in (T60) and (I61) can be evaluated face-wise, i.e. as
broken integrals, or using a discrete variational expression, as in @) Hence,
JyorVuy-nry and [; orVut-nr{, can be safely replaced by [, orVuy-V.Z4,y
and |, o, 01Vl - V.25, respectively.



5 Numerical results

In this section we illustrate, via numerical simulations based on anatomical heart
and torso geometries, the stability and accuracy of the explicit splitting schemes
analyzed in the previous sections. Numerical results for an isolated bidomain model
using the time-marching procedures of section §3|are presented in subsection §5.2]
Subsection §5.3|demonstrates the capabilities of the splitting schemes introduced in
section §é]to provide accurate 12-lead ECG signals.
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Fig. 51 Cut view of the heart-torso computational mesh: heart (red) lungs (green), bone (blue) and
remaining tissue (apricot).

5.1 Simulation data

The simulations are performed with the anatomical data and the model parameters
used in [CFGT09al ICFG09b]. For the sake of conciseness we only report here the
main ingredients (full details are given in [CFG'09a, ICFGT09b]).

The computational heart and torso meshes were obtained starting from the Zy-
gote (www.3dscience.com) anatomical model, using the 3-matic software
(www.materialise.com) to obtain computationally-correct surface meshes.
The mesh, displayed in Figure [51] contains the heart, lung, bones and remaining
extramyocardial tissue. They have been obtained by processing the surface meshes



www.3dscience.com
www.materialise.com

with Yams [FreOll] and GHS3D [GHS90]. The volume heart and torso meshes are
made of 542 000 and 1 242 000 tetrahedra, respetively.

The bidomain model parameters are given in Table EI, where Gil.e (resp. o} ,) de-
notes the scalar intra- and extracelluar longitudinal (resp. transverse) conductivities.
Table 7] provides the conductivity parameters for the torso (supposed isotropic).

Am (cm™ D[Cy mP)] 0! (Secm N[0l (Secm™N[o! (Sem [l (Sem™T)
500 1073 [3.0x103[3.0x103[3.0x107%[1.2x1073

Table 6 Bidomain model parameters.

oy (Sem Dol (Sem™NH[op (Scm™T)
6.0x107%[24%x107%]4.0x107°

Table 7 Torso conductivity parameters: tissue (t), lungs (1) and bone (b).

As in Chapter[3]section 2] a rescaled version of the two-variable model proposed
by Mitchell and Schaeffer in [MS03al is considered as ionic model. Functions g and
Lo, are then given by

Iion(Vm7 W) - —w (Vm - Vmin>2(Vmax - Vm) Vm - Vmin ’
Tin (Vmax - Vmin) Tout(vmax - Vmin)
id ! it Vi<V,
_ i ,
g (Vm, W) _ Topen Topen(vmax - Vmin) " gate
it Vi 2> Vgatea
Tclose

where the values of the free parameters Ty, Tout» Topen» Teloses Vgate are reported in
Table@ and Vinin, Vmax are scaling constants (-80 and 20 mV, respectively).

. RV |,.LV—endo| LV—epi
Tin | Tout | Topen | Telose | Telose Telose Vgate

4.5/90|100| 120 | 140 105 |-67

Table 8 Mitchell-Schaeffer ionic model parameters.

Continuous [P; Lagrange finite elements are used forthe space discretization of
both the heart and the torso equations. The time step size was fixed to T = 0.25 ms
and the Robin parameter, for the heart-torso coupling scheme (I538)-(T61), to v =
0.1.



5.2 Isolated heart

The isolated bidomain equations (T36)-(138) are approximated using the time-
marching schemes (I37)-(138). In what follows, we shall refer to each of these
schemes using the following terminology:

Coupled: (u3, Vi) = (MZH,V,ﬁJrl);
Gauss-Seidel: (u}, V) = (ul,Vitl);

Jacobi: (uf,Vy) = (ul, V).

Extracellular potential

Fig. 52 Time course of the transmembrane potential (left) and extracellular potential (right) at a
given location in the epicardium.

The time course of the transmembrane and extracellular potentials at a given
epicardial location are displayed in Figure [52] We can observe that the simulations
are numerically stable and the curves are practically indistinguishable. Somehow,
this is not surprising since the electrodiffusive Gauss-Seidel and Jacobi splittings
are expected to still provide optimal first order accuracy. A slight difference can be
seen after axis rescaling, as shown in Figure[53]

scheme Coupled|Gauss-Seidel |Jacobi
T (ms)
0.25 OK OK OK
0.50 OK OK OK
1.00 OK OK OK
1.25 NO NO NO
1.50 NO NO NO

Table 9 Stability sensitivity to the time step size 7. OK indicates numerical stability and NO
indicates numerical instability.

The results reported in Table[D|confirm that the electrodiffusive Gauss-Seidel and
Jacobi splittings do not introduce additional constraints on the time step size 7, as
predicted by Theorem T}
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Fig. 53 Time course, after axis rescaling, of the transmembrane potential (left) and extracellular
potential (right) at a given location in the epicardium.

5.3 12-lead ECG

For comparison purposes, the simulated 12-lead ECG signals obtained with the ex-
plicit coupling procedures (T37)-(138) will be compared with those obtained using
heart-torso coupling (section (see also [LBG™ 03, IBCF"09]) and heart-torso un-
coupling (section [5.1)). We shall refer to each of the considered schemes according
to the following terminology:

e Full coupling: (u%, V) = (ulH, v+l in (152)-(154);
Uncoupling: (u, V%) = (u*',v2+1) and heart-torso uncoupling (see Remark [2]
and e.g. [BCFT09)]).

e Robin: (u}, Vi, u%) = (uitt,vott yiy in (I58)-(161);

e Gauss-Seidel-Robin: (u}, Vi, uh) = (u, v+ L) in (T58)-(T61);

e Jacobi-Robin: (u}, Vi, wy) = (ul, V2, u}) in (I38)-(161);

In Figures [54] and [53] we provide the complete 12-lead ECG signals obtained us-
ing the full coupling (black) and uncoupling (red) approaches. We can observe that
the uncoupling approach is unable to reproduce the correct signal amplitude, which
is indeed magnified by a factor close to 2 in practically all the ECG leads. Moreover,
the shape mismatch in some of the leads is clearly visible: the QRS complex in V3
and the T-wave in V2, for instance. Similar observations have been reported in chap-
ter (see also [LBG™ 03, BCE™09]), for both healthy and pathological conditions.

In the next paragraphs, we shall see that (for an equivalent computational cost)
the Robin based explicit coupling introduced in section §4] provides much more



accurate ECG signals. For illustration purposes, in Figure[59] we have reported some
snapshots of the body surface potentials obtained with the Jacobi-Robin scheme.
Figure[58|shows a posterior view of the potential within the torso and the heart. The
potential matching at the heart-torso interface is clearly visible.

In Figures [56] and [57] we compare the simulated 12-lead ECG signals obtained
with full coupling (black) to those obtained with fully decoupled Jacobi-Robin
scheme (red). The improved accuracy with respect to the uncoupling approach is
striking. Indeed, the signals are practically indistinguishable in all the 12 leads.
Some minor differences are visible in the QRS complex of V2 and V3. Similar
results are obtained with the Robin and Gauss-Seidel-Robin schemes, that we omit
for the sake of conciseness. Nevertheless, in order to illustrate the impact of the level
of decoupling in the accuracy of the ECG, we have reported in Figure[60|a rescaled
comparison of the QRS complex (left) and T-wave (right) of the first ECG lead,
obtained with the full coupling, Robin, Gauss-Seidel-Robin and Jacobin-Robin ap-
proaches. No significant differences are observed in the T-wave, whereas slightly
better results are obtained with the Robin approach in the QRS-complex.

The 12-lead ECG signals of a pathological situation, a left bundle branch block
(LBBB), have been also computed to illustrate the robustness of the proposed split-
ting schemes. Figures [61] and [62] presents the corresponding signals obtained with
the full coupling (black) and Jacobi-Robin (red) schemes. Once more, the decoupled
scheme shows very good accuracy and stability.

Finally, we go further in the investigation of the robustness of the schemes, by
considering different heart and torso geometries and model parameters. In partic-
ular, we keep ¥ = 0.1 as in the previous cases. To this aim, we revisit the ECG
numerical simulations recently reported in [BCFT09]. Figures 61| and [62| the cor-
responding signals obtained with the full coupling (black) and Jacobi-Robin (red)
schemes. Once more, both signals are in excellent agreement. Similar results have
been obtained for a LBBB pathology, that we omit here for the sake of conciseness.

6 Conclusion

We have introduced and analyzed a series of first order semi-implicit time-marching
schemes for the cardiac bidomain equations, either isolated or coupled with general-
ized Laplace equation for the torso. The main feature of the analyzed schemes is that
they all allow a fully decoupled computation of the ionic state, the transmembrane
potential, the extracellular potential and the torso potential.

For the isolated bidomain model, Theorem [1]| shows that the Gauss-Seidel and
Jacobi splittings do not compromise the stability of the resulting schemes; they sim-
ply alter the energy norm. Moreover, the time step restrictions are only dictated by
the semi-implicit treatment of then non-linear reaction terms. The numerical results
reported in section[5.2] confirmed these theoretical findings.

We extended these time-marching techniques to the numerical simulation of the
ECG, by combining the Gauss-Seidel and the Jacobi like bidomain splittings with



an explicit Robin-Robin heart-torso coupling. This specific treatment of the heat-
torso coupling is well-suited, particularly, since the time discretization of the two
(quasi-static) elliptic equations does not produce numerical dissipation and, there-
fore, conventional Dirichlet-Neumann explicit coupling might lead to numerical in-
stability. Theorem [2] shows that the proposed splitting schemes are stable under an
additional mild CFL like condition T = O(h). The numerical study reported in sec-
tion [5.3] using anatomical heart and torso geometries, demonstrated that the Gauss-
Seidel-Robin and the Jacobi-Robin splittings are able to provide accurate 12-lead
ECG signals, both for a healthy and a pathological condition. Note that this is a
major advantage with respect to the conventional heart-torso uncoupling approxi-
mations, which (for a similar computational cost) are known to provide inaccurate
ECG signals (see e.g. [LBG'03, [PBCO3, BCF"09]). The robustness of the pro-
posed splitting schemes has been also illustrated with numerical experiments based
on different model parameters and heart/torso geometries.

The theoretical and numerical study in this chapter is limited to discretizations
yielding first order accuracy in time. Some insights into feasible extensions to higher
order are commented in Remark [6] Although the present stability analysis holds
irrespectively of the original time discretization scheme, it does depend on the (first
order) extrapolation involved in the splittings. As a result, the generalization of the
present analysis to hight order extrapolations seems not straightforward. Further
numerical investigations would certainly help to clarify this issue and could be the
topic of future work.
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Fig. 54 Simulated ECG signals (standard and augmented leads) obtained using heart-torso full
coupling (black) and uncoupling (red).



Fig. 55 Simulated ECG signals (chest leads) obtained using heart-torso full coupling (black) and
uncoupling (red).
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Fig. 56 Simulated ECG signals (standard and augmented leads) obtained using heart-torso full

coupling (black) and Jacobi-Robin scheme (red).
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Fig. 57 Simulated ECG signals (chest leads) obtained using heart-torso full coupling (black) and
Jacobi-Robin scheme (red).



Fig. 58 Posterior view and cut plane of the torso potential at time # = 10 ms.



Fig. 59 Snapshots of the body surface potentials at times 1 = 10, 32, 40, 200, 250 and 310 ms
(from left to right and top to bottom).
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Fig. 60 Comparison of the QRS complex (left) and T-wave (right) of the first ECG lead: Full
coupling (black), Robin (green), Gauss-Seidel-Robin (blue), Jacobin-Robin (red).
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Fig. 61 Simulated ECG signals (standard and augmented leads) for a LBBB pathology, obtained
using heart-torso full coupling (black) and Jacobi-Robin scheme (red).
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Fig. 62 Simulated ECG signals (chest leads) for a LBBB pathology, obtained using heart-torso
full coupling (black) and Jacobi-Robin scheme (red).
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Fig. 63 Simulated ECG signals (standard and augmented leads) with the geometry data and model

parameters of Chapter[5] obtained using heart-torso full coupling (black) and Jacobi-Robin scheme

(red).
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Fig. 64 Simulated ECG signals (chest leads) with the geometry data and model parameters of
Chapter 3] obtained using heart-torso full coupling (black) and Jacobi-Robin scheme (red).






Chapter 7

Stability analysis of time-splitting schemes for
the specialized conduction system/myocardium
coupled problem in cardiac electrophysiology

Abstract. The Purkinje network is the rapid conduction system in the heart. It en-
sures the physiological spread of the electrical wave in the ventricles. most of the
methods that have been used in the literature to solve the Purkinje/ myocardium
coupling are implemented using a Gauss-Seidel time-splitting scheme without any
proof of their stability. In this work, we first prove the stability of the space semi-
discretized problem. Then we present four different strategies for solving the Purk-
inje/ myocardium coupled. The strategies are based on different time discretization
of the coupling terms. The first scheme is fully coupled, where the coupling terms
are considered implicit. The second and the third schemes are based on Gauss-Seidel
time-splitting schemes where one coupling term is considered explicit and the other
is implicit. The last is a Jacobi-like time-splitting scheme where both coupling terms
are considered explicit. Our main result is the proof of the stability for the three
considered schemes under the same restriction on the time step. Moreover, we show
that the energy of the problem is slightly affected by the time-splitting schemes. We
illustrate the theoretical result by different numerical simulations in 2D. We alos
conduct 3D simulations using physiologically detailed ionic models models.

This chapter is part of a joint work with S. Aouadi and W. M barki.

1 Introduction

The excitation of the cardiac cells starts at the sinoatrial node where pacemaker cells
generate an electrical current that propagates thought the atria. This electrical wave
does not propagate directly to the ventricle since the interface between the atria
and ventricles is isolating. Only the atrioventricular node allows the propagation of
this wave to the ventricles. Then the electrical wave follows the His bundle which

141



is a rapid conductive system that ends in the Purkinje fibres directly connected to
the ventricular cells. This rapid conduction system is electrically isolated from the
heart muscle except at the endpoints which are connected to the myocardium in an
area called "Purkinje Muscle Junctions" (PMJ) [ACTZI11] IBGG™ 12, TTPO8]||. Due
to the small scale of the His-Purkinje system, and its location within the ventricles,
measurements of its anatomy are often not available. The small spatial scale of the
rapid conduction system means that it is typically modelled using a branched one-
dimensional approximation.

Most of models associated to the specialized conduction system use the mon-
odomain equation. These models consider the Purkinje system as a one dimensional
network without worrying about the extracellular part of these bundles. They lead to
anon-linear reaction diffusion equations coupled to an ordinary differential equation
modelling the ionic activity in cardiac cells [LG93)IBJ98, |ABSO1,ISNHO1].

Sinoatrial node Bachmann's
bundle
AS .

AtrioY]%r:jtgcular wz(\ y His bundle

)

Left posterior
bundle
Right bund| 3 Purkinje
ignt bundie fibres
al

Fig. 65 Schematic representation of the specialized conduction system both in the ventricles
(His bundle and purkinje fibers) and the atria (Bachmann’s bundle). Figure courtesy: Wikipedia.
https://en.wikipedia.org/wiki/Bachmann%27s_bundle

Several studies concerning the modelling of the action potential were held,
we distinguish the physiological model [Nob62bl [BR77bl [DN85! [LRI1b| [LR94b,
TTNNPO4b] and the phenomenological model [Fit61b, NAY62al RM94bl |AP96bl
MSO03Db]. In this paper, we will work with both physiological and phenomenological
models. For the stability analysis and some numerical results, we use the Mitchell-
Schaeffer phenomenological model [MS03b] and for the physiological numerical
results, we use the Ten Tuscher model [I'TNNPO4b]] for the 3D geometry and
Difrancesco-Noble [DN85] for the Purkinje network.

Many of arrhythmias are related to the His-Purkinje system like in the Wolff-
Parkinson-white syndrome where the electrical signal can enter into the different
regions of the myocardium. This causes the propagation of two wave fronts at the


https://en.wikipedia.org/wiki/Bachmann%27s_bundle

same time, one from Purkinje to the myocardium and the other in the opposite di-
rection [WPWT06]. Also, the left and the right bundle branch block, which leads
to a delayed activation of the ventricles[FKM™ 05, [ISIT06, NHZ 06, LSS™04]. The
arrhythmia may also be generated by Ionic effects within the rapid conduction sys-
tem J[CNTT07].

In different studies, the Purkinje system has been modeled using the monodomain
equation [LG93,ISNHO1,/ABS91, [BJ98]. In order to introduce a physiologically ac-
curate model of the electrical activity of the heart, one should take into account this
rapid conductive system and the way it is coupled to the myocardium. Three works
have presented different coupling models [VC07a, [ACTZ11, BGG™ 12]:

In [VCO7al], the coupling between the Purkinje cells and the myocardium is rep-
resented at the discrete level for the bidomain equation. A mathematical analysis
of this representation could not be performed since the coupling conditions are not
given in the continuous level. In [ACTZ11]], authors provide a mathematical repre-
sentation of the coupling conditions at the continuous level, the effect of the Purk-
inje on the myocardium is represented by a source term. Whereas, the counter effect
is based on a robin-like boundary condition on the terminals of the Purkinje net-
work. This representation would be detailed in this paper, as it would be used for
the stability analysis that we will perform. In the paper by Bordas et.al [BGG'12],
the coupling of the Purkinje and the myocardium is performed using the bidomain
equation for both Purkinje and myocardium. The idea is based on previews work by
D’ Angelo and Quarteroni [DQOS]], where they proposed a reaction diffusion equa-
tion 1D/3D coupling model for an application in tissue perfusion. The model by Bor-
das et.al [BGG™12] is derived using an averaging through the cross section of the
Purkinje network and by passing to the limit from a cylindrical shape of the Purkinje
network to the one dimensional model. A mathematical analysis of the existence and
uniqueness of the solution has been provided in the same paper. the present work
we consider the coupling conditions derived in [ACTZ11]] where the myocardium
and Purkinje electrical activities are represented by the monodomain model and are
coupled using a Robin-like boundary condition. The model is described in section
[2l We use the finite element method for space discretization. We present different
time-splitting schemes allowing to uncouple the 1D/2D. The same methodology
could be used for the 1D/3D coupling model. In section 3] we prove the stability of
the space semi-discretized problem. We study the stability of the fully discretized
problem for the different numerical schemes (Gauss-Seidel and Jacobi uncoupling
schemes) in section[d]by combining different techniques using energy based stability
[EBOS8b, ifer] and some theoretical results developed [HR90b, ThoO6b]]. In the sec-
tion 5] we conduct some numerical simulations for the 1D/2D and 1D/3D coupled
problem using the different time marching schemes and we compare their accuracy.



2 Modelling

2.1 Mathematical models

Let’s denote by 2 C R? the myocardium domain, A stands for the Purkinje network
domain, Q; C Q is the Purkinje muscle junction (PMJ) (see Figure [66). In the my-
ocardium the electrical wave is governed by the monodomain model[ACTZ11]: a
non-linear reaction diffusion equation and a dynamic system modelling the cellular
ionic currents, with appropriate boundary conditions

A(COY + Lion(V,W)) + 5 = div(6VV) + Iy in @x]0,T],
IW +g(V,W) =0 in 2x]0,T], 1)
oVV-n=00nd0x|0,T],

We also use the monodomain model for the Purkinje system

Ap(Co0iVp + Lionp(Vp, W) = div(c,VV)) + Luppe on AXx]0,T|
OWp +8p(Vp,Wp) =0 on Ax]0,T] (2)
0p(x)VVp(x) -n, =0 for x=x1 on |0,T|

where
We unsure the myocardium/Purkinje coupling following [ACTZ11]]

_&

Op (1) VVp () -mi = & (V)i = Vp(x)) for x =x2 on 10, T
si(x) = {(s), = \gli;\ 0p(xi)VVp(x;i) - mi ifx el_Q,» on]0.7] (3)
eLse
VP(7O)7 V(,O), W(,O), Wp(v()) given, (4)

Constants A (respectively, A,) is the surface of membrane per unit of volume in
the myocardium (respectively, Purkinje), C (respectively, C,) the capacitance of the
myocardium (respectively, Purkinje) cell membrane, ¢ the average of tissue con-
ductivity, V the transmembrane voltage in the myocardium, V, the transmembrane
voltage in the Purkinje segment, I;,,(respectively, fionp) the total membrane cur-
rent per unit of surface in the myocardium (respectively, Purkinje), S; the surface of
membrane of the Purkinje cells in £;, 0}, the conductivity of the Purkinje segment,
gi the conductance of the PMJ and W (respectively, W,,) represents the ionic model
state variables in the myocardium (respectively, Purkinje), n (respectively, n,) stands
for the outward unit normal on dQ (respectively, x = x| ), I, pp (respectively, I, o)
the applied current on £ (respectively, A ). In this study, the dynamics of W, W,
Iionp and Iy, are described by the phenomenological two-variable model introduced
by [MS03b].
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Fig. 66 Schematic representation of the 1D/3D coupled problem domains: A represents the Purk-
inje fiber and Hiss, right and left bundels, €2 represents the myocardium and €2; is the coupling
zone between the Purkinje end node (x;) and the myocardium.

Tin | Tout | Topen | Telose Vgate
0.3] 6 | 120 150 |0.12

Table 10 Mitchell and Schaeffer ionic model parameters. The time constants Ti,, Tour» Topens Telose
are in millisecond and Vg, is in millivolt.

W 1% W, v
Lon(V.W) = —V*(V—1)+ 1 Tionp(Vo: Wp) = —T"’ ViV —1)+ -2
mn

n out Tout

w1 W,—1 .
si V< Vgate S1 Vp < Vgate
Topen Topen
g(V.W) = W 8p(Vo, W) = W
—— si V> Vege —L 5P V> Ve
Telose Telose

where the values of the parameters Ty, Tour, Topen, Teloses Veate are provided in table

18I}



3 Stability analysis of the semi-discretized problem

For the proof of the stability, we will make use the following assumptions, which
has been used also in [[EBOS8Db| ifer].
Assumption 1:

Lion(V,W) < CI([VI+ W) Tionp(Vp, Wp) < Cre([Vp| + [Wp)

<
_ (1)
VW) <G(VIHIW]) (o, Wp) < GVl + Wh))

Here, constants Cy,Cy are different from Cj.,C, . because we suppose that some
ionic parameters could be different in Purkinje and the myocardium models.

Lemma 1. (Gronwall’s lemma)
let BeR, ¢ €€'([0,T],R) and f € €°([0,T],R) with

dt¢§ﬁ¢+fa

then .
vie0.T], o) <o)+ / PO p()ds, @)
0

3.1 Space discretization

We first introduce a spatial semi-discretization of the monodomain model through
first order Lagrange finite elements. Let us assume that the domain Q (resp.
A) can be covered by a regular partition (resp. ) of simplexes triangles (resp.
edges) of maximal diameter h (resp. k) , with N 4+ 1 (resp. n+ 1) nodes, noted
X to xy (resp. X to x.,). Consider the space Ph1 (resp. Phl) of continuous lin-
ear finite elements on (resp. .) and the usual basis of hat functions d%’,...,dbf(,
(resp. cbg", s <P,’Zf) attached to the nodes xo, ..., Xy (resp. X¢0, ..., Xe,»), respectively.
The semi-discrete monodomain problem then reads as: find a (V,W,V,,,W,) €
C([0,T];P})* x C([0,T]; P, )* solution of the following variational equations:

A(C [ 0V @} +Lion(V, W) ) + [ 5i@) + [ 0VV - VD! — [ 1,y @) =0

Jo dW@l+ [ g(V,W)@! =0

h7 —_—
= adapp.e @) ‘=0

Ja 8thq51h"e+fA gp(vaWp)qbzil’e =0 ;
3

Ap(Cp [ VoD +Tionp (Vo, Wp) ) + [ 0pVVp - VB —S(V)i— V(i) By ()



forall j=0,....Nand [ =0,...,n.

N N N
By setting V(1) = Y _Vi())®J. W(r) = 3_Wilt) @ Ve(t) = 3 _Vei(t) B} and
=0 i=0 i=0
N
Wp(t) = ZWe,i(t)CDJ}-"E, we can rewrite these equations under matrix form:
i=0

MO,V +F(V,W)+KV =0
MoW +G(V,W) =0

XeMeO Ve + Fo(Vp, Wp) + KoV, =0

M&[Wp+gP(Vp7Wp> == O

where V = [Vo, ..., W|T, W = [Wo, ... W]T, Vo = Voo, oo, Ve, Wy = [We 0, o, We ]

x=AxC, M= (/ D) j0..n , K= (/ oVOIVP!) i N,
o Q

Xe=Ap*Cp, M= (/ DD )i, s Ke= (/ OV V)i j0...cn
A A
8i
F(V,W)=M(AxLipn+si—ILapp) s Fe(Vp,Wp) =Me(Ap*Tionp— = ((V)i=Vp(x2)) —Lapp)

G(va) ZMg(V,W), gp(VpaWp) :Megp(vpaWp) .

The matrix form of the problem would be used later in the numerical simulation.
In the stability analysis below, we shall make use of the following standard discrete
trace-inverse inequality (see [ThoO6bl.)

Lemma 2. Trace inverse inequality
We define X;, as an internal continuous Lagrange finite element approximation of
H'(Q). Then

d

v _
|%|2§Cﬁh NIV, Wve X, 4)

where Cy. a positive constant independent of the discretization parameter h (but that
might depend on the polynomial order).

In the proof of the following theorem we will use the trace inverse inequality for
finite element space X, = P}:e

Theorem 1. Let T > 0, A > 0 and let V,(0) € H'(A), V(0) € H'(Q), W,(0) €
L*(A),

W(0) € L*(Q), Lupp € L*(Q) and Lpp . € L*(A) be given data and let (V,Vy, W,W,,)
be a solution of problem (1)-(3). Assume that (11) holds, then

trerllg);][l VOUS+ IV O+ W OG-+ W ()][5] < DIV )15+ Vo (O)IF + W (0)]15 + W (0)1]



1 ar “ary | 2 1 2
T [1—e ](ATCWappHO"'m”lapp,eno)
Proof. Using as test functions 45;’ = V(respectively, @;’ =W)in (), (respectively,

in (3)2) and cblh’e =V, (respectively, cbl”*“ =W,) in (@)3, (respectively, in (3)4), and
by summing the four equations we obtain

a(v?) /at(WZ) /&Vp"‘) /«%(Wp"‘) 1 / 1 /
+ + + +— [ oW - VW4 —0 [ 6,VV,-VV,
/Q 2 0 2 A 2 W2 AC Jo ACp Jp PP P

I
1 1
= **Iion(vvw)v - 7Ii()11.[7(VP7WP)VP */ g(V,W)W */ gp(vpaWp)Wp
C Cp Q A
L
S. .
— [ o) Vi)V = £ =V Wo+ [ oV + [ Fa¥e
o |9l S; Q A
I n

®)

Using the lower bound for the eigen values of the conductivity tensor we obtain

I

/cvv-vv+ /cpvvp-vvpzm1(|V|%+|vp|%). (6)
Q A

:A*C ApxCpy

on the other hand, using the assumptions in Assumption 1 on the ionic model, we
have

1 1
12 = E Qlion(V>W)V - E

P

/Alion’p(VPva)Vp_/th(Vaw)W_/Agp(Vme)Wp

1 1
(Lion(V,W))? + V2 + 3¢ (Lion(Vp, Wp))* + V7 + 5/ (g(V,W))* +W?
JA Q

<
—2C Jo
1
+§/A(gp(Vp,Wp))2+Wp2
<mo[[|VI[5 + [IW115] +ms[[[Vol 1§+ [Wol[§] + mallIVI[5 + W3] + ms[| Vol [5 + W I3]
>~ mp 0 0 3L Yplio plio 4 0 0 SUIYpllo pllo
7

2t +1 ¢,
26, G

2Gi+1 G
2 'C

1
), ms = (C; + =) and

where my = max( 5

1
ns = (Cé,e+ 5)

For the coupling equation in the myocardium domain, we treat the source term
using the trace inverse inequality as follows,

), m3 = max(



1 S; 1 S;
I3 =— / (xt)vvp(xl) nll.QV / (x,)VVp(x,) nilgiv

AxC Jo 2] ~ AxC Q|.Q|
< 2[/9’ [VVp(xi) - mif* + [V (x) [*lx]
< 2 S pl i+ IV1R]
§m7[||Vp||o+|\VH0]
1 me Cy Mg Y
where mg = ATCSi 1 0p [|=(a) and m7 = max(7577)-

We treat the Robin boundary condition appearing as a coupling condition in the
Purkinje fiber equation as follows,

b= f;,| (V)i = V)] Vo )

o1
~A,*GCp 2\Q|2
§m8[||V|Io+HVpII%]

[||V||0+|-Q |||Vp||o} )

1 8i
Apx C 2Qi?
Using the 1nequa11tles (6)-(©) and using the Cauchy Schwarz inequality for the
applied current terms I, and I, ., We obtain:

where mg = max(|€2;],1).
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with A = 2(max(my + mg,m3 +ms) +m7 +mg + m + ﬁ)
Applying the Gronwall’s lemma gives
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4 Stability of the time-splitting schemes

In this section we present the space discretization and the different time-splitting
schemes we will be using for solving the Purkinje myocardium coupled problem. In
the stability analysis below, we shall make use of the following discrete Gronwall’s
lemma (see [HR90DI)).

Lemma 3. Discret Gronwall’s lemma
let k, B and ay, by, c;, 7, for integers | > 0, be non-negative numbers such that:

anJrkibl §kinal+kicl+3 forn>0,

=0 =0 =0

suppose that ky; < 1, for all 1, and set o7 = (1 — kyl)_l. Then,

an—|—k2b,Sexp(kZGm){ch;—&—B} forn>0. @)

1=0 =0 =0

We also make use of the following assumption,
Assumption 2:
Si - 2
AxC " ApxCy

@3]

4.1 Time discretization

First we present the time discretization of the variational formulation of the Purkinje
myocardium coupled problem. For the sake of simplicity, we use a first order semi-
implicit time discretization. We believe that the stability results would be the same
for higher order time discretization schemes.
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Depending the choice of V* and V;", where (*) could be (") or ("1, we can allow
a full coupling or different time-splitting schemes solving the coupled problem.

e Full coupling: (V*, V) = (V1 vt
The coupling conditions could be introduced implicitly using a full coupling
scheme as follows equation (@). This means that equation (I)-@2)-(3) are solved
in the same system, which could be expensive when using refined meshes.
Both of the coupling condtions, robin boundary condition and the source term s;,
are introduced in the first member of the linear system:

n+l S *Gp(xl) (Vn+1( ) VIH»I(XFI))

S |Q;] *x Ax
Y ()1 4 gi* Ax |V () = gi*Ax e 4)
po M Sixop(x;)” P M= op(X;) a

Ax is the space step. In the next paragraph, we propose different time-splitting
schemes applied to equation (3) in order to uncouple equation (1) from equation
2).

We distinguish tow types of time-splitting methods: Gauss Seidel like and jacobi
like numerical schemes.

e Gauss Seidel Purkinje to myocardium (P—M) scheme: (V*,V;") = (V", V;“)
We first compute the solution on the Purkinje system using the average of the
myocardial potential at the previous time step, then we compute the myocardial
potential using the solution of the Purkinje system.

The coupling conditions are then discretized as follows:



gi*Ax
S,’ * Gp(x,')

Si * Oy (X;
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gi*Ax
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=V () =
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(5)

e Gauss Seidel myocardium to Purkinje (M—P) scheme: (V*, V' ) = (vt Vr;’)
We first compute the myocardial potential using the solution of the Purkinje sys-
tem at the previous time step, then we compute the solution of the Purkinje sys-
tem using the average of the myocardial potential.

The coupling conditions are then discretized as follows:

S * 0p(x;)
+1 _ Mt P\t A .
P = S )~ V)

8i * Ax (6)

Si* 0p(x;)

i*AX
[ =V () = SE2E gyt

Vn+1 : 1
b )1+ Si* 0p(x;)

e Jacobi scheme: (V*,Vy) = (V", V)
We compute the myocardial potential using the solution of the Purkinje system
at the previous time step, and we compute the solution of the Purkinje system
using the average of the myocardial potential at the previous time step.
The coupling conditions are then discretized as follows:

ntl _ S”LP(X")(
! |Q;] * Ax
gl'*A.X
Si* 0p(x;)

Vo (xi) = Vg (xi-1))
8i * Ax
Si* 0p(x;)
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(V"

4.2 Stability of the time-splitting schemes

Our main result concerns the energy based stability of the fully discretized my-
ocardium/Purkinje coupled problem. Let us first denote by

an < V"

2 2 2 2
6.0 11V 6.4 +1IW™ 5.0 + W 15,4

02 02 02 02
ao = |[V7lo.2 + Vo lloa +1IW 5.0 +11W 154 »
by = |[VV1I54 +11VV"][5 0

and the energy

m
def
Ep = a,,ﬁ—AtZ (||VV;||(2),A + ||VVnH(2),Q)

n=0



Theorem 2. Let m* At =T > 0, V,(0) € H'(A), V(0) € H'(Q), W,(0) € L*(A),
W(0) € L*(R), Ipy € L*(2) and Ipp » € L*(A) be given data and let (V", Vo, W W
the solution of problem (B)). Assume that Assumtion 1,2 are satisfied, then for each
of the four time marching schemes described above, there exist a constant C > 0 and
a constant 'y > 0 depending on the parameters of the model, the time T and (Ax)

such that for all

1
At < - ®)
Y

we have
E, <C.

Proof. In the system of equations (3)), we replace the test function (¢, ¢., ¥, ¥,) by
(vt vt wet L witl) By summing the four equations and using the identity

z(an-H 7an)an+1 —_ (an+1)2 + (an—H 7(1")2 _ (an)2’

we obtain,
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Using the Assumption 1 we have
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Similarly,
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Also using the Assumption 1 we obtain for the right hand side of the cell variable,
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For the coupling condition that appears as a source term in the myocardium domain,
we have

24t [ Si 2A1%S; || O [|1=(a)
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In order to treat the term Jg, we start by controlling the square of of the potential
mean value in £2; using the Holder’s inequality

*27L *(y x2
= (g L V(e
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i

<
Hence we obtain,
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On the other hand, we use the Cauchy Schwarz inequality for the applied current

terms,
Hlyntl +1112 +142
A*C/QI:;WV" < e app oo +1IV" o)
241 ntl yntl At ntl |2 ntly)2
Ap*Cp /Alapﬂaevp < m(”[am’A 0.A +||Vp ||O,A)

Using the inequalities (9)-(T4), we obtain
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The constant m represents the minimal eigen value of the diffusion tensor ¢. By
summing equation (I3)) over n, 0 <n < m— 1, we have
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We then obtain
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which gives, for instance, in the case of the full coupling (V*,Vy) = (vrtt) Vg’“)

m
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where ¥ = max(a; + 05 + Q7,00 + Qg + 03, 03, 0.

The Assumption 2 unsures that (a9 — ag) > 0. By applying the discrete Gron-
wall’s lemma, we obtain the following estimates for each of the proposed numerical
schemes:

1. Full coupling (V*, V) = (V"1 vitt)

For all Ar < )l/ we have

m
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2. Gauss-Seidel scheme from Purkinje to myocardium (P—M): (V*, V) =
(v vt
For all At < %, we have
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3. Gauss-Seidel scheme from myocardium to Purkinje (M—P): (V*,Vy) =
(vt v
For all At < %, we have
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4. Jacobi scheme (V*, V) = (V", V)
For all At < %, we have
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The proof of the theorem holds from these refined estimates.

For a sufficiently small value of Ax, we could see that Y = a; + a5 + o for all
the time-splitting schemes. We could also see from o5 that we have a CFL-like
condition Af = O((Ax)). The difference in the terms that control the energy for the
different schemes are lead by the norm of the gradient of the action potential in the
Purkinje domain at the initial condition and the last time step. This means that the

energy is controlled by the same expression ( C {ao + AI(Z?:O( AICHI;’;I} ||%_Q +

*

1 n 2 o ey o .
FyTon 1Zipp.ell5.4)| ) when the initial condition is constant.

5 Numerical results

In this section we conduct two study cases showing the numerical stability of the
different time-splitting schemes presented above. The first case is a 1D/2D coupling,
we use this case in order to show the order of convergence of the different numerical
schemes. Since we demonstrate the stability analysis with the phenomenological
MS ionic model, the results shown in this study case would be performed with the
same ionic model. The second case is a 1D/3D coupling problem where we present
a realistic 3D heart geometry coupled to a 1D Purkinje system. In this case, we
use physiologically detailed transmembrane ionic models both for ventricular and
Purkinje cells. Our goal is to show numerically that the stability of different schemes
remains true even with physiologically detailed ionic model.



5.1 1D/2D coupling case: Convergence analysis

In order to illustrate the stability results developed in the previous sections, we con-
duct here some numerical simulations for the full coupling numerical scheme. The
myocardium domain is represented by a square (1 cm x 1 cm) and a first Purkinje
fiber is represented by a 1 cm segment .

The coupling between the Purkinje and the myocardium is performed in the region

=

x1 A X

Fig. 67 Schematic representation of the 1D/2D coupled problem domains: A represents the Purk-
inje fiber, Q2 represents the myocardium and £2; is the coupling zone between the Purkinje end

node (x;) and the myocardium. The coupling in the upper right region is similar to the one in the
down left region.

Q; ((0.2 cm x 0.2 cm)) as shown in Figure We also added another segment

(a) 3ms (b) 7 ms

(e) 15 ms (f) 27 ms

9.632e-01

ED.&
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‘04

0.2

EO.UJJE-IOJ

(i) 32 ms

Fig. 68 Snapshots of the depolarization phase of the electrical wave showing the anterograde and
retrograde circulation of the electrical wave between Purkinje and myocardium. Simulation are
performed with the full coupling scheme.

and coupled it in the top right of the myocardium as shown in Figure [67] the cou-



pling is performed using the same conditions as for the first segment. Our goal is
to show that the numerical stability is not affected by the anterograde and retro-
grade circulation of the current between the Purkinje segment and the myocardium.
We stimulate the first segment at its left free extremity. We perform a simulation of
the full coupling scheme where space and time discretization parameters are given
by At = 1072 ms Ax = 5 x 1073 cm. This simulation would be considered later
as the reference solution and would be used for comparison with the time-splitting
schemes solutions. In Figure[68] we present the results for the full coupling scheme:
Panel (a) shows the initial condition then after 3ms we see the propagation in the
Purkinje fiber (panels (b, c) ). Then in panel (d) we see how the fiber activates the
myocardium in the down left coupling region. After that, the electrical wave propa-
gates through the myocardium (panels (e, f, g)). When the electrical wave arrives at
the top right corner (panel (h)) it activates the second segment of the Purkinje (panel
@).

In Figure[69] we show the plateau phase in panels (a,b) and the repolarization in
panels c, d and e.

(a) 60 ms (b) 260 ms
(c) 277 ms (d) 290 ms
E‘?.éSZE-UI
08

06
“04
02

EO.U.'OE-H.‘O

(e) 330 ms

Fig. 69 Snapshots of the electrical potential at the plateau phase (panels (a,b)) and at the repolar-
ization phase (panels (c,d,e)). The simulation is performed with the full coupling scheme.

5.2 Accuracy of the numerical schemes

In order to compare the different time-splitting schemes to the reference solution.
we performed the three other simulations using the same model and discretization
parameters as for the full coupling. In Figure [70] we present a snapshot the trans-



membrane potential at time 27 ms computed using the full coupling sheme (70h),
the Purkinje to myocardium Gauss-Seidel scheme (70p), the myocardium to Purk-
inje Gauss-Seidel scheme (|7_Ui:) and the Jacobi scheme @). One can see that the
electrical wave reaches the top corner of the myocardium domain at the same time.
In order to study the time (respectively, space) convergence of the numerical
schemes we fix the space (respectively, time) step Ax = 5 x 1073 cm (respectively,
(At = 0.01 ms) and compute the solution of each of the time-splitting schemes for
different time (respectively, space) steps (Ar = 0.05,0.025 and 0.0125 ms) (respec-
tively, Ax = 0.04,0.02 and 0.01 cm). We denote by (V,V;),er = (Vies, (Vp)rey) the
couple of the transmembrane myocardium and Purkinje potentials for the reference
solution. For each of the schemes, we compute the [? relative error as follows:

1V Vo)rer = (V. Vo)l 2 (0.1 xun)
(2 Vp)ref| |L2((0,T)xQuA)

Error = ,

where [ (V, Vp)reff \2 VP)”%}((O,T)X.QUA) = ||(V)r€f7 (V)”[z}((oj)xg) JFH(VP)FEf -

(VP)H%IZ((QT XA)

In Figure [71] (left) (respectively, right), we show the convergence in time (respec-
tively, space) for all the numerical schemes. We see that both the four schemes are
of order one in space and time. This is in line with the space and time discretization
used here. The uncoupling schemes do not alter the order of convergence. We also
see the uncoupling schemes have the same accuracy as the full coupling scheme.
This is also in line with the theoretical result where the term that controls the energy
is slightly affected by the splitting schemes.

(a) (b)

(©) (d)

Fig. 70 Snapshots of the action potential in the Purkinje and the myocardium domains at time
27ms: (a): full coupling scheme, (b):Gauss-Seidel scheme (Purkinje to myocardium) . (c): Gauss-
Seidel scheme (myocardium to Purkinje) and (d): Jacobi scheme.
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Fig. 71 Time (left) and space (right) convergence of the transmembrane potential error for the full
coupling, Gauss-Seidel and Jacobi time-marching schemes.

5.3 1D-3D numerical results

In this paragraph, we use the previously described numerical schemes in a 1D/3D
coupling framework. We also use physiological models for cell membrane ionic
current description instead of the two state variable MS phenomenological model
used for the mathematical analysis. The goal is to show the numerical stability of
the four schemes presented bellow using physiological models.

5.3.1 Model setup

The heart domain is discretized using a 3D tetrahedral mesh as presented in Fig-
ure [72] (left). We manually construct the Purkinje network on the realistic geometry
of the heart Figure [72] (middle) representing left and right His bundles and simpli-
fied ramification of the Purkinje system. Each extremety of the Purkinje network is
coupled to the ventriclar domain. Each coupling regions (£2;), is given by a small
bull with radius 3 mm, as shown in Figure [72] (right). We use the Ten Tusscher
et.al model [TTNNPO4b] for the ventricular domain and Difrancesco-Noble model
[DNSS] for the Purkinje network. For each of these two models, the ionic current is
described using different ionic channels. For instance, the Ten Tusscher et.al model
consnsists of 19 state variables used in order to describe 12 ionic current. The total
ionic current is given by



Fig. 72 Space discretization of the Heart geometry (left). Purkinje system embedded in the heart
geometry showing the coupling regions in the ventricles (right): Seven branching nodes and eight
Purkinje/myocardium coupling regions.

Tion = Ing + IKI + 1o + 1k +Iks + Icar + INak + INaCa + ToNa + Ibca + IpK + IpCaa

where Iy, is the late sodium current, /g, is the inward rectifier current, I;, transient
outward potassium current, Ig, is the potassium rapid delayed-rectifier current and
Icar is the L-type calcium current. Iy,c, is the Na®/ Ca%t exchanger current, I,k is
Na® /K" pump current, I,,c, and I,¢ are plateau Ca>* and K* currents. Iyc, and I x
are background Ca?* and K™ currents. The full description of the ODE system and
the expression of the different currents could be found in [TTNNPO4b]. In this study
case, we stimulate the Purkinje network at its free extremity located in the base of
the heart, the electrical wave then propagates from Purkinje to the myocardium. At
the branching nodes we use the Kirchhoff law: That’s the sum of the current flowing
into the branching node is equal to zero. The values of the different parameters
used in this simulation are given in Table[TT] The parameter of the ionic models for
both Purkinje and ventricular cells are those from the original papers and
respectively.

A4y C©G o 6 | & | S
103em=T[1073mF /em? |4 mS/cm|1 mS/cm |2 mS[0.04 cm®

Table 11 Values of Purkinje and myocardium PDE model parameters

5.3.2 Full coupling simulation

In this paragraph, we show the numerical results of the coupling between the
Purkinje network and the myocardium using the previously presented numerical
schemes. First, we present the results for the full coupling scheme. As for the 2D



case, this solution would be considered as the reference solution and would be com-
pared later to the solutions of the other numerical schemes. We use a time step
At = 0.1 ms. In Figure[73] we show the distribution of the transmembrane potential
both in the Purkinje network and in the ventricles: At time zeros (panel a) the heart

(a) O ms (b) 1 ms (c) 4 ms
(d) 6 ms (e) 10 ms (f) 20 ms

V

3.059¢+01
EO.Q()]Q
--30.066

E—60.393
-9.072e+01

(g) 50 ms (h) 73 ms

Fig. 73 Snapshots of the depolarization phase of the electrical wave showing the circulation of
the electrical wave from Purkinje to myocardium. Simulation are performed with the full coupling
scheme. The color bar shows the values of the electrical potential in mV.

is fully repolarized, after stimulating the His bundle and the atrio-ventricular node
located at the base of the heart, the electrical wave propagates in the one dimensional
domain (panel b) and the through the branching nodes (panel c). The electrical wave



achieves the terminal nodes at time 6 ms (panel d) and starts activating the ventric-
ular cells in the coupling regions. All the coupling regions are activated at time 10
ms (panel e). Then the electrical wave propagates in the ventricles (panels f,g). The
heart is fully depolarized at time 74 ms. We show in (panel h), the distribution of the
transmembrane potential at time 73 ms where the heart is nearly full depolarized.
In Figure [74] we show the distribution of the transmembrane potential at the
plateau phase (panels a,b) and at the repolarisation phase (panels c, d). Since we
didn’t introduce any heterogeneity in the ionic model making the distinction be-
tween the His bundle and the Purkinje network transmembrane potential, all the
rapid conduction system have the same action potential duration (APD). The APD

(a) 160 ms (b) 250 ms (c) 305 ms

\%

3.059¢+01
E0.261 9
--30.066

E-60.393
-9.072e+01

(d) 335 ms (e) 360 ms

Fig. 74 Snapshots of the electrical potential at the plateau phase (panels (a,b)) and at the repo-
larization phase (panels (c,d,e)). The simulation is performed with the full coupling scheme. The
color bar shows the values of the electrical potential in mV.

in Ten Tusscher et.al model is higher than it is in the Difrancesco-Noble model: We
can see at time 205 ms (panel b) that the Purkinje is repolarizing but the ventricular
cells are still at the plateau phase. At time 305 ms (panel c), the Purkinje network
is fully repolarized and the ventricular cells are not yet. The whole heart is fully
repolarized at time 360 ms (panel e).



5.3.3 Comparison of the different numerical schemes

In this paragraph, we compare the solution of the times splitting schemes to the full
coupling solution presented in the previous paragraph. First, we remark that in terms
of the numerical stability all the time-splitting schemes have the same restriction on
the time step size Az. In Table [I2] we show that all of the numerical schemes are
stable for At = 0.05, 0.1 and 0.15 ms and are not stable for Ar = 0.175 and 0.2 ms.
This reflects CFL-like stability condition that we see in the Theorem 2]

scheme Coupled|Gauss-Seidel M—P|Gauss-Seidel P—M |Jacobi
At (ms)
0.05 v v 4 7
0.1 7 v v Y
0.15 v v 4 4
0.175 X X o X
02 X X a X

Table 12 Stability sensitivity to the time step size Af (ms). Symbol X indicates numerical insta-
bility and symbol v indicates numerical stability.

Second, looking at the trace of the transmembrane potential at a given point in the
Purkinje network Figure[73] (left), one could not distinguish the difference between
the four studied schemes. In order to observe the differences in the traces, we made
a zoom in of the transmembrane potential at the upstroke period from 5.995 ms to
6.025 ms. The differences are very negligible. In Figure[76] we show the time course
of the transmembrane potential recorded at a given point at the left ventricle. The
four numerical schemes provide a visually indistinctive transmembrane potentials.
Only, when zooming in at the repolarization phase for instance we distinguish the
different traces.

One of the main biomarkers used to compare two different simulations in cardiac
electrophysiology is the activation time which are the times for which the cell is
depolarized. Here we define the activation map as a function that for each point
in space gives the time for which the transmembrane potential reaches 0 mV. In
Figure[77} we show the activation map for each of the solutions of the four schemes
represented in a cut of the heart domain: In (panel a), respectively (panels b, c, d),
we show the activation map of the full coupled problem, respectively (Gauss-Seidel
M—P, Gauss-Seidel P—M, Jacobi) solution. The L2 error of between the solutions
obtained by the time-splitting schemes and the implicit coupling scheme are less
than 0.2%

5.3.4 Retrograde Propagation
In this paragraph, we wanted to show the retrograde propagation of the electrical

wave in the Purkinje system. This means that in this case, the electrical wave does
not come from the atrioventricular node but comes from the ventricular muscle. In
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Fig. 75 Comparison of the Numerical schemes on the Purkinje action potential trace at a given
point in the Purkinje network: Full coupling (red continuous line), Jacobi scheme (green dashed
line), Gauss-Seidel myocardium to Purkinje (blue dotted line) and Gauss-Seidel Purkinje my-
ocardium (blue dashed line). X-axis time (ms). Y-axis electrical potential in mV.
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Fig. 76 Comparison of the Numerical schemes on the myocardium action potential trace at a given
point in the ventricles: Full coupling (red continuous line), Jacobi scheme (green dashed line),
Gauss-Seidel myocardium to Purkinje (blue dotted line) and Gauss-Seidel Purkinje myocardium
(blue dashed line). X-axis time (ms). Y-axis electrical potential in mV.

order to perform this simulation case, we stimulate the heart ventricles instead of
stimulating the His bundle at the base of the heart. The retrograde propagation is
known to be one of the main cause of polymorphic ventricular tachycardias and my
lead to ventricular fibrillation [BJ98| [HVS™16|. Here we performed a retrograde
simulation where we stimulate the ventricular domain at the apex of the heart, the
electrical wave then propagates through the ventricular domain and quickly reaches
the PM1J regions as shown in Figure [/8| (panel a). The electrical wave takes a long
time to propagate from the myocardium to Purkinje, in our case, it took about 30 ms
to activate the Purkinje system Figure[78](panels b and c).
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Fig. 77 Comparison of the activation time maps obtained using the different numerical schemes.
The color bar shows the values of the activation times in ms.

6 Conclusion

In this paper, we demonstrated a theoretical result about the numerical stability of
four different schemes allowing to solve the Purkinje myocardium coupled mon-
odomain equations using the MS ionic model. The first theorem shows the stability
at the semi-discrete level. The second theorem shows the stability of the four dif-
ferent numerical schemes at the fully discretized level. The first scheme treats the
coupling problem in an implicit manner and the three remaining schemes provide
different splitting schemes allowing to solve the PDE in the myocardium domain
independently from the PDE in Purkinje system 1D domain. Results show that we
don’t need an additional restriction on the time step At in order to guarantee the
stability of the time-splitting schemes. Both for the full coupling and the time-
splitting schemes, we show that we have a CFL-like restriction of the time step
At = O((Ax)). The results show also that time-splitting slightly alter the energy of
the problem. These theoretical results were followed by numerical simulations. In
order to show the convergence of the numerical schemes, we performed 2D/1D cou-
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Fig. 78 Snapshots of the depolarization phase of the electrical wave showing the circulation of
the electrical wave from myocardium to Purkinje. Simulation are performed with the full coupling
scheme. The color bar shows the values of the electrical potential in mV.

pling simulations. These simulations illustrate the exactitude of the theoretical study.
We show the convergence of the numerical solution by studying the error between a
reference solution (obtained using the full coupling scheme with very refined space
and time discretization) and the different uncoupling schemes: The relative error is
slightly altered by the uncoupling schemes and the order of the convergence is the
same for all the four schemes. We also performed 3D/1D simulations for the four
studied schemes using a 3D realistic heart geometry and a manually constructed
Purkinje system including His, left and right bundles and Purkinje fibers. We also
used physiologically detailed ionic models for both myocardium and Purkinje cells.
Although we didn’t prove the stability for the coupled problem using physiological
ionic models, numerical simulations are coherent with the theoretical result obtained
with the MS phenomenological ionic model and the numerical simulations obtained
in the 2D case. In fact, 3D simulations show that the relative error between the full
coupled solution and the different time-splitting schemes are less than 0.2%. The
different plots show that the uncoupling schemes do not alter the propagation of the
electrical wave. The difference between the transmembrane solution obtained by the
different numerical schemes is almost invisible when looking at the transmembrane
potential traces of a heart beat. Only by zooming-in over a small time window that
we could distinguish between them. We also performed a retrograde propagation
simulation where we stimulate the heart in the myocardial domain in a region at



the apex. We found that the electrical wave takes almost 30 ms in order to activate
the Purkinje fibers. We think that this delay is related to the coupling parameters
S; the membrane surface of the Purkinje cells in the coupling region £2; and g; the
conductance of the Purkinje/muscle junction. Future works would concern the sen-
sitivity of the coupled problem solution to those parameters but also to the pattern
variabilities of the Purkinje network.






Part IV
Applications






Chapter 8
Inverse problems in Electrocardiography

We present in this chapter preliminary results of parameters estimation problem.
We provide a strategy allowing to estimate the torso conductivity parameters. We
present also numerical results concerning the identification of two ionic model pa-
rameters.

The estimation of the torso conductivity parameters is part of a joint work with
M. Boulakia, M.A. Fernandez and J.-F. Gerbeau, reported in [BFGZ08al.

1 Introduction

In the literature, (see e.g. [NLT™ 06, [SSN94]) the aim of the inverse problem is gen-
erally to identify the epicardial potential. Our approach is to identify the parameters
of the model. As a first step we only consider the torso conductivity parameters. We
consider the heart-torso uncoupled problem introduced in chapter [5] (section.1). In
section 2] we study the sensitivity of the ECG to the torso coductivity parameters.
In section[3] we present a for the estimation of the torso conductivity ratios. Finally,
we provide in section ] preliminary results for the identification of the ionic model
parameters.

We remark that if the torso potential is computed using the weak coupling con-
dition in the heart-torso interface, we can reduce the number of the conductivity
parameters to estimate. In fact, suppose that we have the bidomain solution in the
heart (Vi and ue) and ut(7y) is the solution of the following problem:

div(yorVur) =0, in Qr,
(Py) Ur =Ue, on X, (1)
Yo1Vur-nt =0, on Ly,

o1, in Qla
where Y€ R and o1 = ¢ 0p, inQy, 2)
Gt in Qt7
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and €, 2, and €2, are respectively the lungs, bones and tissue domains. The solution
.. . 1

ut(7y) is independent of 7, thus, if we take y= e where o; € {o,01,0p}, the
i

parameters to estimate are now the ratios of the two remaining parameters by o;:

&

o,

—_)qﬁéai. The choice of ¥ is postponed to the next section.
l

2 Sensitivity

In this paragraph, we study the sensitivity of the electrocardiograms to the torso

conductivity parameters, in order to choose the parameter y described before. Sup-

pose that ECG = ECG(oy, 01, 0p), then the ECG derivative to the parameter oy is
ECG((1+¢€)oy,01,00) — ECG(0y, 01, 0p)

approximated by ds ECG(0y, 01, 0p) ~ o ,
t

where € is a small real. We define by the same way the quantities ds; ECG and
ds,ECG. For o; € {0,01,0p}, the normalized o;-derivative of the ECG is de-
fined by 0,05, ECG(0y,01,01). This quantity allows to compare the sensitivity of
the ECG to different parameters whatever their magnitude. In Figure [/9| we plot
the normalized conductivity parameters derivatives of the first lead of the ECG,
0;d5,ECG(0y, 01,0), where o; denotes the conductivity oj of the lungs, o}, of the
bones (skeleton) and o; of the remaining tissue (torso tissue). We remark that the
sensitivity of the ECG to the skeleton parameter is negligible compared to its sensi-

. 1 .
tivity to other parameters. Thus, we choose y = P and the parameters to estimate
b

Oy O] .. . .
are now, — and —. The number of torso conductivity parameters to estimate in
O O

b b
the inverse problem is reduced when we use the weak coupling. This simplification
could not be done if we use a full heart-torso coupling, since the solution ur(y) of
the problem P, depends on y due to the coupling condition (88)),.

3 Estimation of the torso conductivity parameters

Let @ C I be the domain of measurement in the torso that will be made precise

later. The inverse problem could be formulated as follows: For a given measurment
0;/0p, in £,

Umeas ON @, find 6 =< 0;/0p, in £y, such that the solution of the following prob-
1, in £,

lem satisfies ut /o A Umeas ON (.
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Fig. 79 The normalized parameter derivatives of the electrocardiogram: 6;ds, ECG (red, con-
tinuous line) for the tissue derivative, ()'laglECG (blue dashed line) for the lung derivative and
0105, ECG (green, doted line) for bones (skeleton)

div(oVur) =0, in Qr,
Ut =iUe, on X,
oVur-ny = 0, on Téxt\w,
oVur-ny=0,0n @,

We have to deal with two difficulties to solve this problem. The first obstacle is a
practical difficulty: the heart potential on the heart-torso interface ue /5 is considered
as a data, whereas, in practice, it is very difficult to access. The second problem is
the ill-posedeness of the problem. In fact, we impose two boundary conditions on
the domain of measurements ® (cVur-ny =0, and ur o A Umeas ON w).

In the following paragraph we present an experimental method allowing the elim-
ination of the practical difficulty and a mathematical regularization allowing the
well-posedeness of the optimization algorithm

3.1 Numerical experiment

. . .. . O O . L
The estimation of the conductivity ratios =L and = from equation (I)) is difficult
Ob Ob
in practice since the potential on the epicardium is an unknown of the problem.

Nevertheless, in the framework of our simplified model, it is easy to eliminate this
missing information using a superposition principle. Let ug be the solution to the
torso equation with a Dirichlet boundary condition ¢g applied on a part S of the
torso skin. We denote by & the quantity us — ut. Note that & satisfies the following



equation:
div(orVE) =0, in Qr,

E=0,onZx,
é:(PS_MTvOHSv
GTV§ ‘nt = 07 in I—éxt\S.

3)

We now propose to estimate the conductivity ratios from this equation using the
following procedure:

o EI1: We first measure vt on S and on .

e E2: Next, we impose a potential ¢s on S and we measure the resulting potential
us on @. _

e E3: We then denote by & the quantity g — vt on ©

We propose to solve the following optimization problem:

m(}nI(G),
with
I(c) =J(0,5(0))
where,
o, in €y,
foreachc =< a, in
1, in &y,

the function & (o) is the solution of the following problem:

div(orVE) =0, in Qr,

E=0,onZx,
z “)
=&, onS,
o1VE -nr=0,in l—éxt\S.
The function J is given by
J _1 _E 2 E _ 5|2 _ 2
(0:8) =5 11§ =& ll2(0) +7 (lon —an* + ]2 — &f),
a_lv in Qh
here B > 0 is a regularization parameter and oy = { Op, in €2y, is in the average
1, in £,

of torso conductivity ratios. We use the quasi-Newton algorithm with line search
method provided by the package OPT++E]1ibrary. The used algorithm in this toolbox
requires the evaluation the function 7 and its gradient. To compute the gradient of 1
we use the adjoint method. For given & and A € H!(Qr) and € > 0, we define the

6 http://csmr.ca.sandia.gov/opt++/
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Lagrangian as follows
L(G,é,l)zl(c,§)+/9 oVEVA 41 /(5 Eat /g/t

where € is a penalization parameter which has been introduced to conveniently in-
clude the Dirichlet boundary condition in the definition of the Lagrangian. Since
&(o) is solution of the problem (@), we have

L0.8(0).2) = J(0.5(0)+ | oVE(©@VA+{ [(E@) -8+ [Eon

=J(0,8(0)).
e W(0,E(0)) _ dL(0,E(0),2)
d/ (o o
E(G)_ do do ’
We have
dL(c,E(0),A) dL dé
T_Ew’g() A)+ 5( 0,§(0), >do'

dg

In pretice it is difficult to compute i5 the dual approach allow to eliminate this

term by searching A, such that i (G E(o),A) =

1 1
F(0£0).10 =06 F(0.E0)0 LTovzv¢+£Ax¢+g/ZA¢=o

o [&@) o+ [ avaves ! [10+] [20-0

By taking A solution of the following problem

—div(6VA) = —(§ — &)X, in Qr,
A=0, on XUS,
oVA-nt =0, 0on Ix\S,

where ¥ is equal to 1 in @ and O else. We then obtain

dI dL

5 (0) = (0.E(0).2)

Consequently we have

ar



d/
dO']

(o) :ﬁ(az—dz)—F/ VE-VA.

Q

3.2 Parameter estimation using synthetic data

For the numerical experiments, we will consider two cost functions corresponding
to two different choices of . The first choice consists in taking @ = Qr. For the
second cost function, we consider the points of the ECG measurements xi,x», ...xo,
and we define w = U?:lB(x,-7 r), where r is “small” (in practice 0.5 cm).
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Fig. 80 Convergence of the quasi-Newton algorithm: Left: the cost function computed in all of the
torso domain. Right: the cost function is computed using ECG lead position. (x-axis ) iterations,
(y-axis) value of conductivity ratios .

In Figure[80] we provide the convergence result of the parameter estimation using
the quasi-Newton algorithm for the two cost functions. In (Figure |80} left) the cost
function is computed on all the torso and in (Figure[80} right) the cost function uses
the ECG lead position as explained previously. The data & is computed with the
conductivity tensor o given by 6, =6 x 107* Sem™!, 6y = 2.4 x 107* Scm~! and
0p = 0.4 x 107* Scm™!. For the regularization parameter we take § = 1076 and o
is given by & = 8.0, ap = 3.0.

. . . o O .
With the first cost function, we obtain ¢¢; = L —15and o = 2L — 6.0 which

B Op Opb
are exactly the values used to generate &. From the practical viewpoint, the second
cost function is of course much more convenient. In that case, we obtain a; = 14.98
and o = 5.992, which is satisfactory.



4 Ionic parameter estimation

In this paragraph we provide some results of the ionic parameters estimation. We
begin our work by estimating the parameter 7o in different regions. This param-
eter is responsible of the generation of the T-wave in the ECG We estimate the
parameter Tgjoge in two different regions, in the right ventricle ’L’ ose and in the epi-

cardium ngsle We simplify the problem by generating a synthetlc ECG that we
denote ECG.s. To estimate the parameters, we propose a cost function based on

ECG. We will solve the following minimization problem

ernnépl ” ECGVLf ECG( close’ cloge) HLP(O,T)a
close’ “close

where ECG(TRY . flé’s'e) is the ECG depending only on "  and ’cgfs’e, all of the
remaining model parameter are fixed to the values which served to compute ECG. ¢
and p is the norm order. In the case p = 1, the problem could be translated to a min-
imization of the surface between two ECG plots which could be meaningful for a
medical doctor. We use thematlab optimisation toolbox tominimise the
function cost. More precisely we can use the function fminsearch or fsolve
for an unconstrained optimization or fmincon for a constrained optimization. In
our case we do not provide the gradient to the optimization function. We only pro-
vide the evalution of the function cost when it is called by the optimizer. This last
one computes the gradient using finite difference method. We refer to the matlab
optimization toolbox documentation for more details about the used algorithms.

In Figure [8T] we provide an illustration of the algorithm convergence. In fact we
plot the values of of 7, 7P and the cost function at each algorithm iteration.

clo%e
The values of Tclose and rdm were initialized to the value 150 and we see that
they converge to the values 121.5 and 91.7 respectively. These values are close
to the values of the used to compute ECG,,; which are respectively 120 and 90.
In Figure [82] we provide an illustration of the algorithm convergence, but starting
from an other point. In fact , the parameters were initialized to the value 50 and they
converge to the 117.5 for ‘L' se and 87.5 for 7°”' . Which remains an acceptable

close*
result.

lose’

5 Conclusion

We have proposed a model based on the bidomain equation to generate numerical
ECG which can be compared to real ones. This model depends on 14 parameters
which should be identified. In this preliminary study we focussed on the conductiv-
ity of the torso. Assuming we fix the conductivity of the bones — which has been
shown to barely affect the ECG — we have proposed a strategy to estimate the con-
ductivity of the lung and the remaining tissues. We have also proposed an example
of estimation of the ionic parameters. The results show that a deterministic method
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Fig. 81 Plots of the values of ngse, Tj(’;je and the cost function during the algorithm iteration.

(x-axis ) iterations. The starting point is (150 ,150).

could be efficient for this problem. The good results obtained with this method on
synthetic data still have to be confirmed on experimental ones. The estimation of the
bidomain model parameters will be the topic of a forthcoming work.
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Chapter 9

Stochastic Finite Element Method for torso
conductivity uncertainties quantification in
electrocardiography inverse problem

Abstract. The purpose of this paper is to study the influence of errors and uncer-
tainties of the imput data, like the conductivity, on the electrocardiography imaging
(ECGI) solution. In order to do that, we propose a new stochastic optimal control
formulation, permitting to calculate the distribution of the electric potentiel on the
heart from the measurement on the body surface. The discretization is done using
stochastic Galerkin method allowing to separate random and deterministic variables.
Then, the problem is discretized, in spatial part, using the finite element method and
the polynomial chaos expansion in the stochastic part of the problem. The consid-
ered problem is solved using a conjugate gradient method where the gradient of the
cost function is computed with an adjoint technique. The efficiency of this approach
to solve the inverse problem and the usability to quantify the effect of conductivity
uncertainties in the torso are demonstrated through a number of numerical simula-
tions on a 2D analytical geometry and on a 2D cross section of a real torso.

This chapter is part of a joint work with R. Aboulaich, E.M. El Gaurmah and N.
Fikal, it is reported in [AFEGZ16|].

1 Introduction

In the last decade mathematical modeling in medicine and biological science, has
shown important evolution. The research community has focused on the mathemat-
ical models for long time aiming to create more realistic models. Generally, models
are imperfect abstractions or conception of reality. Moreover the value and utility of
any model depends on the reliability and exactness of its input data, which are rarely
if ever available. In other hand interaction between Input data errors and modeling
uncertainties, which leads to imprecision and uncertainty in model output. In order
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to improve the modelization and the simulation results, deterministic partial differ-
ential equation (PDE) have been reformulated into stochastic PDE (SPDE).

The ECGI problem consists of a forward problem and an inverse problem. For a
given source current in the heart the forward problem, which is considered well
posed, simulates the field distribution on the body surface by calculating the lead
field. The inverse problem involves reconstruction of the primary source currents
by localizing the electrical activity in the body using a set of measurement on the
body surface and information about the torso geometry of the patient [GR0O9]]. In
this paper we consider the electrocardiographic forward and inverse problem . The
electrical potential recovered on the heart surface allows to identify and localize
some electrical dysfunctions. In the clinic inverse solutions, the goal is to target
some triggers of cardiac arrhythmia and thereby plan a much more accurate surgical
interventions [SLY " 14].

The mathematical inverse problem is known to be ill posed since the solution is
generally not unique and is not stable [Had23|]. Therefore the same problem can
be formulated as minimization of an objective functional subject to PDE equation
constraint, in our case it’s a stochastic partial differential equation (SPDE). Many
regularization methods have been developed in order to solve the obtained problem
[DJS11}IGR0O9, HLM11} [ZK09]. The obtained solution depends on the regulariza-
tion method and parameters [HO93||. Although in the case of ECGI the inverse solu-
tion depend also to the physical parameters and the geometry of the patient. In most
of the studies these variabilities have not been considered. In particular, the torso
is assumed in the literature, in most of the studies to be homogenous. Moreover,
when the conductivity heterogeneities are included, they are determined from data
obtained from textbooks. The problem is that the difference between the experiment
environments and other factors related to the measurement tools make this data to
be different from a paper to another [FS88. |GLG96].

Only few works have evaluate the effect of conductivities uncertainty in the prop-
agation of the electrical potential in the torso [OHS89, WKB™11]]. Regarding to the
forward problem, authors in [GKMOS]|| use the stochastic finite elements method
(SFEM) to describe the effect of lungs muscles and fat conductivities. In [WKB T 11],
a principal component approach have been used to predict the effect of conductivi-
ties variation on the body surface potential. However, to the best of our knowledge,
no work in the literature has treated the influence of conductivity uncertainties of
the ECGI inverse problem. In this work, we propose to use a stochastic optimal con-
trol approach to solve the inverse problem and to compute the potential value on
the heart. Control cost functional will be formulated in terms of norms that include
both spatial and stochastic dimensions. The derivation of the optimality system is
analogous to the deterministic case in which one an energy functional has been used
[AAKOS], with the SPDE constraint, as proposed in [GKMOS||. Moreover for the
development of the optimization algorithm we use an iterative procedure based on-
the conjugate gradient method like in [AAKOS]. Then we take advantage of the fact
that the expectation of the smooth random processes can be evaluated very con-
veniently with the stochastic galerkin (SG) method. In order to solve the SPDE
problem, we use the stochastic finite element method. Full details about the SFEM



could be found in [BTZ05b, IBTZ05al BS10, |GS91]]. For the discretization of the
optimal problem we not found many references, about the theoretical study we can
see [CQRI13, HLM11].

2 Stochastic forward problem of electrocardiography

2.1 Function spaces and notation

We give in the following a short overview of the notations, and definition of the
stochastic Sobolev space used throughout this paper. Let D be the spacial domain.
Q is sample space that belongs to a probability space (2,4, P), A denotes the o-
algebra of subsets of €2, and let P be the probability measure. Following the theory
of Wiener [Wie98] , as well as Xiu and Karniadakis [XKO02[], we can represent any
general second-order random process X (@), ® € £, in terms of a collection of fi-
nite number of random variables. We represent this random process by a vector
& =E&(0) = (&(®),...,Ev(w)) € RY, where N is the dimension of the approxi-
mated stochastic space. We assume that each random variable is independent, its
image space is given by §; = &;(2) C R. Each random variable is characterised by a
probability density function (PDF) p; : {; — R™, fori = 1,...,N. Then, we define
the joint PDF of the random vector &

p(&) =TIy pi&) VEeL,

where the support of p is { = va: | &i. The probability measure on § is p(&)dé.
As commented in [ XKO2]], this allows us to conduct numerical formulations in the
finite dimensional (N-dimensional) random space I". Let us denote L*({) the space
of random variables X with finite second moments:

EX3(£)] = /C X2(E)p(E)dE < +oo

where E[.] denotes the mathematical expectation operator. This space is a Hilbert
space with respect to the inner product:

WJM=EWH=AWYWKM€ for X,Y € L*({).

Additionally, we consider a spatial domain D and we define the tensor product
Hilbert space L?(D) ® L*({) of second-order random fields as:

2(D) 2 I2(C) = {u D2Q —>R//\ £)P dxp §)d§<oo}.

This space is equipped with the norm:

e (ARG dé))



Analogously, the tensor product spaces H! (D) ® L*({) and H} (D) ® L*({) can be
defined.

2.2 Stochastic formulation of the forward problem

Following we represent the stochastic characteristics of the forward so-
lution of the Laplace equation by the generalized chaos polynomial. For the space
domain we use simplified analytical 2D model representing a cross-section of the
torso (see Figure[83) in which the conductivities vary stochastically.
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Fig. 83 2D computational mesh of the torso geometry showing the different regions of the torso
considered in this study (fat, muscle, lungs, torso cavity)

Since we suppose that the conductivity parameter depends on the space and on
the stochastic variable o' (x, ), the solution of the Laplace equation does also depend
on space and the stochastic variable u(x,£)). The stochastic forward problem of
electrocardiography can be written as follows

V(0(x,§)vulx,g)) =0 in DxQ,
u(x,E)=uy on I[xQ (1)

G(x,é)% =0 on I[IxQ,

where, I{ and I; are the epicardial and torso boundaries respectively, ug is the po-
tential at the epicardial boundary and & € Q is the stochastic variable. Without lost



of generality the stochastic variable could also be represented by a vector. The nu-
merical results in [GKMOS]|| show that there is no difference between using one ore
second dimensional stochastic spaces. The notion of the weak solution for SPDEs
is based on a extension of classical theory [BTZ05b], test function become random
fields and an integration over stochastic space is done with respect to the corre-
sponding measure. Thus, the weak form involves expectations of the weak problem
formulation in the physical space. Correspondingly, il € H} (D) ® L*(), i = u — ug
is the weak solution of (TJ), if for all test functions v € H(} (D) ®L2(C ), [BTZO03al,[?],
we have

IE{ /D o(x,g)va(x,s;).vv(x,g)dx] +IE[ /D o (x, E)Vitg (x, €).Vv(x, E )dx| = 0.2)

2.3 Descretization of the stochastic forward problem

In order to compute approximate solutions, we use the stochastic Galerkin (SG)
method to solve equation (I). To develop this method, we denote Y, C L%({) the
stochastic approximation space

Y, = span{%, ....,'Pp}.

A stochastic process X (&) of a parameter or a variable X is represented by weighted
sum of orthogonal polynomials {¥ (&)} denoting the generalized chaos polynomial.
More details about the different choices of PDFs could be found in [LMRNT02].
In our case we use the Legendre polynomials which are more suitable for uniform
probability density.

We have

X(&) =Xl Xiw(8),
where X; are the projections of the random process on the stochastic basis {¥(&)}7_,
with respect to the joint PDF p.

X, = /Q X(E)H(E)dp = (X(E).B(E)),.

The mean value and the standard deviation of X over £ are then computed as fol-
lows



Since in our study we would like to evaluate the effect of the conductivity random-
ness of the different torso organs on the electrical potential, both of ¢ and u are now
expressed in the Galerkin space as follows:

p
X&) =) i(x)%(&) (a)
k=0

By substituting (a), (b) into the elliptic equation (I)) and by projecting the result on
the polynom1al basis {¥, (&)}’ _,, we obtain the following system:
Form=0,...,p,

(b).

Il
-
S

m=1°

p p
SN B VA6 @ V)ax) =0 inD,

1=0 k=0
fo(x) =up(x) onlj, 3)
dr(x)=0 onI[Vk=1,...p,
~ Ol (x)
6i(x) 75 = =0 on IVL,k=0,...p,

where T = E[¥(8), H1(E), ¥ (E)]-
For the spatial domain, we define a subspace Vj, C H(% (D) of standard Lagrange
finite element functions on a triangulation of the domain D.

V/’l = Span{¢17¢2a ""7¢N}

By applying the standard finite elements variational formulation and Galerkin pro-
jections we obtain a linear system of size (p x N), where N is the number of the
degrees of freedom for the Laplace equation in the deterministic framework. Obvi-
ously u € Y, ® V, the the electrical potential is now expressed in this tensor product
subspaces as follows:

ZZ )i 9 W “)

The system (3)) can be reformulated as linear combinaition of finite elements stiffe-
ness matrices which results is

p p
TumK' | (X)) = Tumf', (5
> [Tiunk' ) = Y-
k=0

k=0

where £ (x) denotes the vector of finite element degrees of freedom expressing the
k' stochastic mode, and for [ = 1,....,p

K' = [Kl]ij = (o)V$i.V9;),
1= = Xer(@)i (01V9:.V9;).

The symbol (.) denotes the inner product taken over the entire spatial domain.



3 Stochastic inverse problem of electrocardiography

The inverse problem in electrocadiography imaging (ECGI) is a technique that al-
lows to construct the electrical potential on the heart surface I from data measured
on the body surface I;. Taking into account the variability of the tissue conductivi-
ties in the torso, we assume that the electrical potential is governed by the stochastic
diffusion equation as shown in the previous section. For a given potential data f on
the body surface I, the goal is to find u(x,&) on I such that the potential data in
the torso domain satisfies

v(o(x,8) vu(x,§)) =0 in DxQ
u(xvg):f on I x Q )
G(xvé)aut(;,,‘é) =0 on It x Q.

Mathematically (1) represent a data completion Cauchy problem for the stochastic

diffusion equation. This problem is known to be ill-posed since Hadamard[Had23|.
In order to reconstruct the lacking data u(x,&) on I x Q, we propose in this pa-
per to build an optimal control problem that takes into account the uncertainties
in the torso conductivities. We then use an energy cost function as described in
[AAKOS,IABAOGO] constrained by the stochastic diffusion equation. In order to gen-
erate compatible Cauchy data, we solve a deterministic forward problem. We denote
by ur the forward solution. Then, we extract the electrical potential at the external
boundary and we denote it by f = ur ;.

We look for (1, 7) € L () x L: (I{) minimizing the following cost function
_1 2 IW(xf) :
7,2) = YE( W6 &) = Flizqy + o0 &) 52—, ).

with v(x, &) solution of :

@)

V(0(x,&) Vv(x,§)) =0 inDxQ
v(ix,€é)=1 onl x Q
G(%ﬁ)%:o onIl x Q.

The differentiability of J and the equivalence of this minimization problem with
the completion one (), results are similar to the determistic case [??]. In order to
solve this minimization problem, we use a conjugate gradient method as introduced
for solving the data completion problem in the deterministic case [AAKOS]. In this
work, the components of the gradient of the cost function are computed using an ad-
joint method. The derivation of the optimality system [2)is described in the following
paragraph.

3.1 Computation of the gradients

Lemma 1. The gradient of the cost function J with respect to M and T is given by:



ZUUBI v ‘ .
T-d’— E[/}_j(can n)¢dL;] Vo € L*(I;)

oI(n,7) , _ oA, .
af-h]E[/Ficanhdr,] Vh € I2(T})

with A solution of : (3)
V.(o(x,8)VA(x,8)) =0 in DxQ

A(x,&) =o(x,&) 208 on IixQ
O'(X»g)ala(f[é) =—(v—f) on I.xQ

Proof. First, we compute the derivative of the cost function with respect to the vari-
able 1. Since the function v is independent of 77, we obtain:
aJ(n

(n,t) o v : :
o ~67—E[/E(63—n)ﬂdﬂl v € L2(). @

Analogously deriving J with respect to the second variable gives:

W'h:m/ ("*f)vl(h)drf]HE[/E(G%717 Gavaih)

dIj]  Vhel*(}), (5

where V' (h) = % (h). The expression (3] could not be used in practice, mainly, be-
cause we cannot deduce a#’i’” from it. In order to calculate this gradient, we use

an adjoint method.

First, let’s denote by W, = {v € H'(D)/v|[; =0} and by #5 = W, @ L*(I").
The Lagrange function is defined as follows:

£ L2(B) x [A(5) x HY ® L) x H' (D) 0 [X({) — R.

2 1 / d v / _/ o r
(v—f)dI] + S| E(Gan n) dn]+E[DovmdD Ficran/ldl“l].

Zn,7,vA) = %E[/

Ie

The random field A (x,&) € H' (D) ® L*(I") is the Lagrange multiplier of the SPDE
constraint of (2). Its equation is obtained by deriving the Lagrange equation with
respect to v:

9. P P P
W(n,r,v&).d}:E[/Fc(v—f)(pdl“c]—&-E[/E(oa—Z—n)oa—ﬁdﬂ]+IE1[/DGV¢VAdD—/EGa—zAdE].

Then for %(n,r, v,A).¢0 =0, with ¢ € #5, we get :

_ 99, _ B v 99
E[/D owmu]—m/n oS ar E[/rc (v— £)¢dLy] E{/E (05 —m)oSodr]. ()

By applying Green’s formula in (6)) we obtain:



—[E[/ V.(6VA)dD] —HE[/ 5 - ¢dI] —HE[/ - ¢>dr IE[/ oVAVdD]. (7)
Since ¢ € #5, we have ¢ = 0 on I}, the equation (7) becomes:
oA
_IE[/DV.(GVA)(pdD] +IE[/FC o 9dl;] = E[/D oVAVdD). 8)
Combining (6) and (8) we finally get:
)
-1 VoVa)pan) +E[ | o%0ar) =B{ | o5t (- (05r ~mlar] —B{| (v~ 1)odr
° ©)
Then, by gathering the adequate terms we obtain:
v . dA
B v.(oVA)04) = 51 [ 05214~ (0 5r —mar)+E[ | =+ aG0dr. (10)

Finally, we deduce that the solution of the following adjoint system is also solution
of the variational system (T0),

A:o%—n on L[xQ an

V. (oVA)=0 in DxQ
G%:,(v,f) on IixQ

The corresponding variational problem is :

8l [ ovAVoan| k[ [ 0% ¢ar) - 5{[ (v f)oary, (12
By replacing ¢ with v’ in (T2), we obtain:

IE[/ oVAVY dD] =1E[/ G%vldlﬂflE[ (v— f)VdIY). (13)

On the other hand, deriving the state problem (T)) with respect to 7 gives the follow-
ing equation

ng 0 on I.xQ (14)

V(O'Vv) 0in DxQ
V=h on I[xQ

The variational formulation of this problem is:
IE[/ oVv VawdD] :IE[/ Ga—vwdﬂ] Yo € H' (D) L*({). (15)
D L on
Assuming that @ = A we have:
IE[/ oVV'VAdD] = IE[/ ldF] VYA e H'(D)®L*(]), (16)

hence



oz

IE[/ )LdF] /Foﬁv’dlﬂfﬂi[ (v—fWdL] VA eH'(D)oLX(C).

I

Then, we obtain
I
n«:[/ (v— f)V L] = ]E[/ G—vdF E[/G—ldﬂ].
I L 3}1

Using (5)) and since A = (G% —n) | we get,

‘”gl; ’ ‘h:E[/rc(V*f )V (h)dI] +E[ /Elo%dﬂ

From the equation (I4), (T8)) and (I9) we finally obtain:

9J(n,7)

an
s -h—IE[/EGEhdFi].

3.2 The conjugate gradient algorithm.

a7

18

19)

(20)

In the previous section, we reformulated the stochastic Cauchy problem as a min-
imization problem. In order to numerically solve this problem, we use a conjugate
gradient optimization procedure. The different steps of the algorithm are performed

as follows:
Step 1. Given f € LZ( ¢) choose an arbitrary initial guess

(@p:tp) € LZ(E) X Lz(E)'

Step 1.1. Solve the well-posed stochastic forward problem:

V.(o(x ﬁ)VvP( ,€))=0in Dx Q
(x,é)avp =0 on It xQ
v (x, €)= on I} x Q,

in order to obtain v” | I and 0"9“ L.
Step 1.2. Solve the stochastic ad]omt problem:

V.(0(x,E) VAP (x,£)) = 0 in DxQ
AP, E) = (,é)%ﬁ’@—% on IixQ
ox.§) PG = —(P(xE) —on LxQ

in order to obtain 1/17 - and 0 % e

step 1.3.: We evaluate the gradient:

VI(9p.ty) = (E[97 — o(x,8) =] vE[W@%

2

(22)



Step 1.4. Determine the descent direction d), as follows:

oy = V@)l
Vi 0| (24)
dp = (d},df)) = =VJ(@p,tp) + Yp-1dp-1,

in order to obtain:

(Ppr1:tpi1) = (Ppstp) + Opdp,
where the scalar ¢, is obtained through a linear search by:

E[[r, 2 (v = f)dL] +E[ (0% —d7) (0% — ¢,)dT]

Op =~ (25)
' E[ . (:)%dL] +E[[.(0 % d")Zdr]
We note that z” is the solution of:
(O'(X,é)Vz"( E)=0in DxQ
#(x,€) = d on IixQ (26)
o(x 7§)azp = on I.xQ.

Step 2. Having obtained (¢,,t,) for p > 0, set p = p+ 1 and repeat from step 1.1
until the prescribed stopping criterion is satisfied. For the stopping criterion, our
algorithm stops when J(¢,,1,) < € or when||VJ(@,,1, HL2 < g1, where € is the

objective function tolerence and & is its gradient tolerence.

4 Numerical results: Analytical case

In this section we present the numerical results of the stochastic forward and inverse
problems. In order to assess the effect of the conductivity uncertainties of each of
organs conductivities on the electrical potential at the heart boundary, we start by
generating our ground truth solution. For the sake of simplicity and reproducibility
we take a harmonic function on the heart boundary, where the exact extracellular
potential:

Uex(X,y) = exp(x)sin(y).

The heart surface the lungs the muscle and fat domains are defined using ellipsoids
geometries as shown in Figure[83] Values of minor and major radius of these ellip-
soids are given in Table [T3]for all organs. Since we assume that the uncertainty of
the conductivity value follows a uniform probability density, as chaos polynomial
basis {¥} we use the Legendre polynomials defined on the interval Q = [—1,1].
We also suppose that the true conductivity uncertainty interval is centered in o7,
which we obtain from the literature [Duc90, FVMH99]. Table [T4] summarizes the
mean values of the conductivities.



organ category

major radius (cm)

minor radius (cm)

heart
lungs
torso cavity
muscle
fat

1.5
3.5
5
5.5
6

1
1.5
5
5.5
6

Table 13 Values of the minor and major radius of the ellipsoids representing organs regions.

organ category |conductivity (S/m)
lungs 0.096
muscle 0.200
fat 0.045
torso cavity 0.239

Table 14 Conductivity values corresponding to the organs that are considered in the model.

4.1 Sensitivity of the forward problem to the conductivity
uncertainties

In order to isolate the effect of each of the torso organs conductivity uncertainties
on the forward problem, we suppose that all of the organs conductivities are known
(deterministic) except one. Then, we solve the stochastic forward problem (I)). This
test has been performed in [GKMOS]. In order to validate our forward problem, we
perform this test for all organs conductivities. In Figure [84] (a), we show the mean
value of the stochastic forward solution. Due to the linearity of the problem, to the
fact that we choose the uniform law and the fact that the center of the interval of
the stochastic variable corresponds to the exact conductivity, the mean value of the
stochastic solution is equal to the deterministic forward solution ( Figure [§4](b)).
In Figure [8_1] (c), (respectively (d) , (e) and (f)), we show the standard deviation
of the stochastic forward solution for £50% uncertainty on the fat (respectively,
muscle, lungs and torso cavity) conductivity value. First, we see that the maximum
values of the standard deviation are small compared to the mean value of the poten-
tial, it is 4% for the torso cavity, 2% for lungs, 10e~* for muscle and 10e= for fat
. This means that the forward solution is more sensitive to the torso cavity and lung
conductivities than it is for the muscle and fat. Second, one could remark that for
all cases, the maximum value of the standard deviation is reached at the edge of the
corresponding organ. In both cases the effect of the conductivity uncertainties on the
forward solution does not exceed 4% of the value of the potential, which means that,
relatively, the forward solution is slightly affected by the conductivity uncertainties.
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Fig. 84 Mean value of the SFE (a). Exact deterministic solution (b). Standard deviation of the SFE
solution for £50% of fat (respectively, muscle, lungs and torso cavity) conductivity (c) (respec-
tively, (d), (e) and (f)).

4.2 Sensitivity of the inverse solution to the conductivity
uncertainties

First, we consider the case where there is no uncertainties. Then we study the un-
certainties effect of the conductivity of the fat (respectively muscle lung and torso
cavity ) on the solution of the inverse problem. In order to do that, we suppose
that the conductivities of all organs are known (deterministic) except the conduc-
tivity of the fat (respectively muscle lung and torso cavity ) which follows a uni-
form law, and where we gradually increase the uncertainty from zero to £50%
of the true conductivity value. We solve the stochastic inverse problem follow-
ing the algorithm described in the previous section. We measure the effect of the
uncertainties using relative error (RE) and the correlation coefficient (CC). In ta-
ble 3, we show the RE and CC between the ground truth and the mean value of
the stochastic optimal control solution. We used different level of uncertainties:
0%,+3%,+10%,+20%,+30% and + 50%. We find that the relative error of the
inverse solution has been barely affected by the uncertainties of the fat and muscle
conductivity even for high uncertainty levels. In fact, the RE (respectively, CC ) is
0.1202 (respectively, 0.9933) when there is no uncertainties. Introducing £50% of
uncertainties in the fat conductivity gives a RE (respectively, CC) equal to 0.1249
(respectively, 0.9923). By the contrary the effect of the lung conductivity uncertain-



ties is high: The RE increase from 0.1202 when we don’t consider the uncertainties
to 0.2932 when we introduce £50% of uncertainties on the lung conductivity.

conductivity uncertainties| 0% | £3% |[+£10% |+£20% |+30% |£50%

fat 0.1202{0.12020.1248|0.1233(0.1243|0.1249

relative error muscle 0.1202(0.12040.1277(0.1279(0.1272{0.1283
lungs 0.1202{0.1286(0.1439{0.2108(0.2651]0.2932

cavity 0.1202{0.1355[0.1597(0.2208|0.2813{0.4887

fat 0.9933(0.9931{0.9928|0.9926|0.9926{0.9923

Corr coeff muscle 0.9933[0.9930{0.99240.9924(0.9923{0.9921
lungs 0.9933{0.9922{0.9899(0.9767(0.9654{0.9117

cavity 0.9933{0.9909{0.9878(0.9799(0.9640{0.8802

Table 15 Relative error and correlation coefficient of the stochastic inverse solution for different
levels of uncertainty on the fat and lungs conductivities.
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Fig. 85 Mean value of the SFE solution with respect to null uncertainty in all organs model (a).
Mean value of the SFE solution for £50% from the reference fat ( respectively, lungs) conductivity
panel (b) (respectively, panel (c)).

The effect of the uncertainty on the correlation coefficient could also be qual-
itatively seen in Figure [85] where the pattern of the mean value of the stochastic
inverse solution looks the same in Figure 83] (a) (no uncertainties) and (b) (£50%
of uncertainties on the fat conductivity) and different in Figure @ (c) (£50% of
uncertainties on lungs conductivity). Similarly the effect of uncertainties on the rel-
ative error could qualitatively seen in Figure [86] As shown in Table [I3] the error
does not change to much from no uncertainties (Figure@ (a)) to +=50% of fat con-
ductivity uncertainty (Figure [86] (b)). Whereas the error is high for +50% of lungs
conductivity uncertainty (Figure [86](c)). The propagation of uncertainties from the
conductivities to the inverse problem solution is reflected in the deviation of the
stochastic inverse solution from the ground truth presented in Figure[87] We remark
that the error is concentrated in the heart boundary I3, it reaches 0.8 for £50% of
lungs conductivity uncertainty and 0.25 for £50% of fat conductivity uncertainty.
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Fig. 86 The effects of adding uncertainty regions of conductivity on the inverse solution in the
epicardial boundary (missing data boundary ): Exact solution (blue continuous line). Stochastic
inverse solution (red dashed line). No uncertainty (panel a ), +50% from the reference fat conduc-
tivity (panel b) and +50% from the reference lungs conductivity (panel c). X-axis polar coordinate
angle from —7x to 7. Y-axis value of the electrical potential on the boundary I corresponding to
the polar coordinatite.
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Fig. 87 Panel (a) (respectively, panel (b) and (c)):Deviation between the SFE solution and exact
solution with respect to null uncertainty in all organs model (respectively,=50% from the reference
fat and lungs conductivity)

4.3 Sensitivity of the inverse solution to the distance between the
complete and incomplete boundaries

In this paragraph, we study the influence of the distance between the complete
boundary I and the incomplete boundary I;. First fix the minor and major radius
of the internal ellipsoid boundary to the value 1.0 and 1.5 cm. Then we gradually
increase the radius of the circular external boundary from 3 cm to 4.5, 8 cm, and
9.5 cm. In Table we show the obtained results for the fat and the lungs, we
observe that the CC and RE deteriorate when we increase the distance between I
and I;. For instance, the RE when considering +50% of fat conductivity uncer-
tainty is RE=0.0098 (respectively, RE=0.2) when the external radius = 3 cm (re-
spectively, 9.5 cm). The effect is more significant for the lung conductivity uncer-
tainty: RE=0.1548, CC=0.988 , when the external radius = 3 cm and RE=0.5031,



CC=0.8731 for an external radius of 9.5 cm. Figure 88| shows that the deviation be-
tween the SFE solution and exact solution with respect to null uncertainty, and for
+50% uncertainties on fat, and lung. In other hand we observe that the variation
of the radius of I affect seriously the solution with null uncertainty, and we can
also remark that the difference between the results obtained with null uncertainty
and those with £50% fat uncertainties become clearly different with respect to the
results obtained in the previous sections of the forward and the inverse problem.

radius=3 radius=4.5 radius=8 radius=9.5

fat | lung | fat | lung | fat | lung | fat lung
Corr coeff | 1.000 [0.9888]0.9991]0.9866(0.9842|0.9601{0.9823(0.8731
relative error|0.0098|0.1548| 0.04 |0.1667|0.1826{0.2873|0.1999(0.5031

Table 16 Relative error and correlation coefficient of the stochastic inverse solution for +50%
from the reference fat and lungs conductivity for 2D torso geometry with different radius

5 Electrocardiography imaging inverse problem

In this section, we test the robustness of the methodology developed in the previous
section for solving the inverse problem in electrocardiography imaging using a real
life geometry.

5.1 Anatomical model

We segment a 2D slice of an MRI image of a 56 years old man. The MRI measures
the diffusion of water molecules in biological tissues, which is useful to distinguish
different regions in the torso domain. The segmentation of the slice shown in Figure
[5.1] (left) is performed manually.



No uncertainty 4+50% uncertainty on fat 450% uncertainty on lung

3 3

3 x10 4
) Iu,15
15
01
3cm 0
g . 0.05
Y2 0 2
0.06 0.06 02
015
45em 004 004
0.1
0.02 002 -
% 0 5
10 10
03 Io.s
5 5
02 e
8cm : 0
04
0.1
5 5 02
A0 A0
05 0 5 0 -0 10

Fig. 88 Left (respectively, middle, right) Deviation between the SFE solution and exact solution
with respect to null uncertainty, (respectively £50% from the reference fat and lungs conductivity).
from top to bottom results obtained for the external circular boundary Radius = 3 cm, 4.5 cm and
9.5cm.

lung cavity

figure MRI 2D slice of the torso (left), 2D computational mesh of the torso



geometry showing the different regions of the torso considered in this study: fat,
lungs and torso cavity, (right). The angle 0 is the second polar coordinate.

We distinguish four organs: the heart surface, lungs, muscles (cavity) and fat. After
the segmentation, we construct a 2D mesh of the torso cross section in which we
identify the organs as shown in Figure[5.1|(right). In this representation, we consider
that all the cavity region is occupied by the muscles. The 2D mesh contains 2395
vertices and 4540 elements.

5.2 Numerical results

In order to assess the effect of torso conductivity heterogeneities on the ECGI in-
verse solution, we generate synthetical data using the bidomain model in the heart
domain. Since we suppose that the torso is a passive conductor, the electrical poten-
tial in the torso is governed by the Laplace equation and the conductivity depends
on the domain as described. The heart is fully coupled to the torso ensuring the con-
tinuity of the electrical potential and current [boul, fer]. We extract the body surface
potential at a given time step, it represents the boundary value on f on the complete
boundary I.. Then, we solve the inverse problem following the algorithm described
in section @ In Figure @ (left), we show the exact (or forward problem) solution.
The inverse solution in the deterministic case (meaning that no uncertainty is con-

-4 8918E+00 4 .5509E+00
-9.6132E+00 -1.7044E-M 9.2723E+00

4 - .
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Fig. 89 Effect of the conductivity uncertainties on the torso potential inverse solution: The figure
(a) shows the exact forward solution. The figure (b) shows the inverse solution when no uncer-
tainty is introduced. The Figure (c) shows the inverse solution when introducing £50% of lung
conductivity uncertainty.

sidered) is given in Figure [89] (middle). As shown in the analytical geometry case,
when we consider the uncertainty on the lung conductivity, the inverse solution is
affected: In Figure @ (c), we show the distribution of the mean value of the ECGI
inverse solution when assuming £50% of uncertainty on the lung conductivity. In
Figure [00] we plot the electrical potential on the epicardial boundary I; versus the



second polar coordinate 6 (as represented in Figure[5.I). We compare the exact so-

——exact ——exact
= =stochastic inverse solution — =stochastic inverse solution

Fig. 90 The effects of adding uncertainty of conductivity values on the inverse solution in the
epicardial boundary (missing data boundary). Left (respectively, right): Epicardial potential when
the uncertainty is equal to zero (respectively,+50% from the reference lungs conductivity). Exact
solution (blue continuous line). Stochastic inverse solution (red dashed line). X-axis denote the
polar coordinate angle 6 and vary from O to 27. Y-axis value of the electrical potential on the
boundary I5.

lution (blue continus line) to the inverse solution (red dashed line). The case where
we don’t consider uncertainty is given in Figure 90| (left), the relative error is 6%.
The case where we consider £50% of uncertainty on the lung conductivity is shown
in Figure 90] (right), the relative error is 16%. The standard deviation of the inverse
solution in case of +50% of uncertainty on the lung conductivity is given in Figure
[T} We remark that the standard deviation magnitude is low compared to the mean

5.3563E-02 2. 5069E-01

| |
0.0000E+00 1 E713E-01 3.3425E-01

Fig. 91 Standard deviation of the stochastic torso potential inverse solution when £50% of uncer-
tainty is considered on the conductivity of the lungs

value of the inverse solution. We also see that the of the standard deviation iso-values



change direction when they cross the lung domain. This feature has been reported
in [GKMOS||. We performed the same test for the fat and the cavity conductivities.
In the cavity domain as represented in Figure 5.1 we consider the conductivity of
the muscles. The inverse solution for 50% of uncertainty on the fat (respectively,
muscle) conductivity is given in Figure [02] (left, (respectively right)). The distribu-

exact
- = stochastic inverse solution

exact
- = stochastic inverse solution

Fig. 92 The effects of adding uncertainty of conductivity values on the inverse solution in the
epicardial boundary (missing data boundary). Left (respectively, right): Epicardial potential when
the uncertainty on the fat (respectively, muscle) conductivity is equal to £50%. Exact solution (blue
continuous line). Stochastic inverse solution (red dashed line). X-axis denote the polar coordinate
angle 6 and vary from 0 to 277. Y-axis value of the electrical potential on the boundary I;.

tion of the standard deviation of the stochastic inverse solution is provided in Figure
[03] (left, (respectively right)). The relative error is 9.5% for the fat case and 13.6%
for the muscle case.

2.9800E-02 8.9400E-02 9.5255E-02 2.8476E-01

0.0000E+00 5.9600E-02 1.1920B-01 g nOOE+00 1.8651E-01 3.9302E-01

Fig. 93 Left (respectively, right): Standard deviation of the stochastic torso potential inverse solu-
tion when +50% of uncertainty is considered on the conductivity of the fat (respectively muscle).



6 Discussion

Solving the inverse problem in electrocardiography imaging based on a combination
of an optimal control approach and the SFEM allowed us to quantify the effect of the
torso organs conductivity uncertainties on the ECGI inverse solution. We highlight
the fact that the stochastic approach provides a complete spatial distribution of the
conductivity uncertainty effects on the forward and the inverse problem. This allows
to obtain a mean value and a standard deviation of the solution at all points of the
heart surface. Whereas, deterministic approaches only provide global measure of
the error between the exact and the inverse solutions. Our results show that increas-
ing the level of the fat conductivity uncertainty from zero to £50% of its original
value does not alter too much the quality of the reconstructed potential. This is in
line with the results presented in [GKMOS] for the forward problem when introduc-
ing £50% uncertainties in the fat conductivity. On the contrary, the results that we
obtained for the uncertainties on the lungs conductivity show an important effect on
the ECGI solution. In fact the relative error is about 16% when introducing £50%
of uncertainty. This result is different from the results presented in [GKMOS]|| for
the forward solution with +50% uncertainties in the lungs conductivity where the
standard deviation does not exceed +3% of the mean value. The CC has not been
significantly altered. We also have shown that the isolines of the standard deviation
change directions when they cross the organ on which we have uncertainties. This is
expected and in line with the results obtained in [GKMOS]|. The standard deviation
of the inverse solution reflects the same features as the Std of the forward SFEM
solution.

7 Conclusions

In this work we presented a novel approach to solve the inverse ECG problem using
a stochastic optimal control formulation. This formulation allowed us to study sen-
sitivity to parameters values in data completion inverse problem and that could have
application in a wide range of bioelectric and biomedical inverse problems resolu-
tion. We used a stochastic finite element method in order to take into account the
variability of the conductivity values in the ECGI inverse problem formulated in a
stochastic optimal control problem. We used a conjugate gradient method to solve
this problem where the gradient of the cost function was computed using an adjoint
method. We have described the different steps of the algorithm used to solve this
stochastic inverse problem. The numerical simulation that we conducted in the 2D
analytical geometry and in the 2D cross section of a real torso showed that there is
an important sensitivity of the solution to the lungs and the skeletal muscle conduc-
tivity uncertainties, whereas the uncertainties on the fat conductivity did not affect
too much alter the inverse solution. One of the major challenges that we would like
to address in future works is the implementation in 3D of the methodology that we
presented in this paper and see if the same results would be obtained in the 3D case.



This task is challenging because of the intrusively of the SFEM in the standard finite
element libraries.
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