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1 Introduction

The aim of this course is to describe the mathematical model of competition in the chemostat and to study
various mechanisms of coexistence of species. Basically, the chemostat consists of a nutrient input, pumped at a
constant rate into a well-mixed culture vessel. The culture vessel contains the microorganisms that are growing
and competing for the nutrient. Volume is kept constant by pumping the mixed contents out at the same rate.
when only one species is present in the chemostat, the model is written Ṡ = D(Sin − S)− q(S)

Y
x

ẋ = [q(S)−D1]x,

(1)

where x, denotes the concentration of the species, S is the nutrient (substrate) concentration and Y denotes the
yields coefficients; Sin and D denote, respectively, the concentration of substrate in the feed bottle and the dilution
rate of the chemostat; q(S) represents the growth rate of the species and is assumed to be an increasing function.
The parameter D1 is not necessarily equal to D and can be interpreted as the sum of the dilution rate D and the
natural death rate of the species: D1 = D + a, where a > 0. The case D1 6 D is considered also in the literature.
This case has the following biological interpretation : D1 = αD, where α ∈ [0, 1] is a parameter allowing us to
decouple the HRT (Hydraulic Retention Time) and the SRT (Solid Retention Time) [7].

The model (1), occupies a central place in mathematical ecology, see [69] for review. It is well known that for
(1) have the washout steady state

E0 = (Sin, 0)

where S = Sin and x = 0, where the species is extinct, and can have a positive steady state

E1 = (λ, x),
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where

S = λ is a solution of equation q(S) = D1, and x =
D

D1
(Sin − λ).

This steady state is meaningful only if λ < Sin and is globally asymptotically stable as long as it exists.
When several species of microorganisms are growing and competing for the nutrient, the interactions of microbial

species which are competing for a single nutrient is described by the following model Ṡ = D(Sin − S)−
n∑
i=1

qi(S)

Yi
xi

ẋi = [qi(S)−Di]xi, i = 1, . . . , n

(2)

where xi, i = 1, . . . , n, denotes the concentration of species i, S is the nutrient (substrate) concentration and Yi,
i = 1, . . . , n, denotes the yields coefficients; Sin and D denote, respectively, the concentration of substrate in the
feed bottle and the dilution rate of the chemostat; for i = 1, . . . , n, qi(S) represents the growth rate of species i
and is assumed to be an increasing function. The parameters Di are not necessarily equal to D.

It is well known [69] that for (2) only one species can survive at steady state. Actually at a steady state of (2)
we must have

[qi(S)−Di]xi = 0, i = 1, . . . , n.

If the species xi and xj , with i 6= j, are present at a steady state then

qi(S) = Di and qj(S) = Dj with i 6= j

are two equations in the single variable S and, in general, cannot have a solution. Hence, in general, besides the
washout steady state

E0 = (Sin, 0, · · · , 0)

where S = Sin and xi = 0, i = 1, . . . , n, that is all species are extinct, generically, model (2) can only have the
steady states

E1 = (λ1, x1, 0, · · · , 0), E2 = (λ2, 0, x2, 0, · · · , 0), · · · , En = (λn, 0, · · · , 0, xn),

where

S = λi is a solution of equation qi(S) = Di, xi =
D

Di
(Sin − λi) and xj = 0 for j 6= i

that is all species except one, namely xi, go to extinction at steady state Ei. This steady state is meaningful if and
only if λi < Sin.

The λi are called break-even concentrations. If the species are labeled such that λ1 < λi for all i > 1, it is well
known that the steady state E1 is locally asymptotically stable and all other steady states E0 and Ei, i > 1, are
unstable [69]. Hence, at steady state, only the species with the lowest break-even concentration survives, this is
the species which consumes less substrate to attain its steady state. One of the main results for (2) is known as
the Competitive Exclusion Principle (CEP), after Hardin [33]. This result states that, under certain conditions,
the locally stable steady state E1 is in fact globally attractive, see Section 2 for precise results.. The CEP was
established by several authors under various hypothesis: Hsu et al. [39] showed the global asymptotic stability of
E1 in the case of Michaelis–Menten (or Monod) kinetics [56] and the same removal rates Di, Hsu [37] extended the
study of [39] with different removal rates by using a Lyapunov–LaSalle argument, Wolkowicz and Lu [76] extended
the result of [37] to growth functions which are not necessarily increasing functions of the substrate S. The reader
may consult [48, 50, 66] for a more thorough account on the contributions of diverse authors.

Although this theoretical prediction has been corroborated by the experiences of Hansen and Hubell [32], the
biodiversity found in nature as well as in waste-water treatment processes and biological reactors seems to contradict
the CEP. For example, in aquatic ecosystems, several phytoplankton species competing for some resources can
coexist [43, 67]. The biodiversity is also found in biological reactors with a mixture including at least two competitors
for one resource, see [36, 68]. This has triggered a lot of mathematical research aimed to extend model (2) to bring
theory and observations in better accordance.

In Section 2 we will discuss the so-called Competitive Exclusion Principle. Different mechanisms of coexistence
which were proposed in the literature are the flocculation [21, 19, 30, 31], that will be considered in Section 3 and
the intra and interspecific competition [1, 47, 23, 77] and the density-dependence of growth functions [20, 51, 52, 53,
54, 35], that will be studied in Section 4. Notice that flocculation can serve as a biological motivation for density-
dependent growth functions. Several other mathematical models [11, 17, 25, 29, 45, 49, 41, 40, 9, 42, 60, 64, 65]
have attempted to understand the coexistence by adding another substrate (product) in the chemostat. We will
not consider these mechanisms of coexistence in this course.
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2 Competitive exclusion in the chemostat

The aim of this section is to show that under certain conditions the Competitive Exclusion Principle (CEP) holds
for the following competition for a single resource model

S′ = D[Sin − S]−
n∑
j=1

pj(S)xj ,

x′i = [qi(S)−Di]xi, i = 1 · · ·n,
(3)

where S(t) and xi(t), i = 1 · · ·n, denote respectively the nutrient concentration and the concentration of the ith
competing species at time t. The input concentration Sin and the removal rates D and Di are assumed to be
constant. The uptake rate pi(S) satisfies

pi(0) = 0 and pi(S) > 0 for S > 0. (4)

The growth rate qi(S) satisfies
qi(0) = 0 and qi(S) > 0 for S > 0. (5)

The functions yi(S), defined by

yi(S) =
qi(S)

pi(S)
, i = 1 · · ·n, (6)

are the growth yields. The model (3) was considered by Arino, Pilyugin and Wolkowicz [4] as an extension of the

classical chemostat model (2), where pi(S) = qi(S)
Yi

, for which the yields yi(S) = Yi are constant. The smallest
positive value of the concentration substrate S = λi defined by the condition qi(S) = Di, where the growth qi(S)
of xi is balanced by the removal rate Di is called the break-even concentration for the ith species.

Let us denote fi(S) = qi(S)−Di, then (3) reduces to the model

S′ = D(Sin − S)−
n∑
j=1

pj(S)xj

x′i = fi(S)xi, i = 1 · · ·n,
(7)

considered by Fiedler and Hsu [26]. The growth rate fi(S) satisfies

fi(S) < 0 for 0 ≤ S < λi and fi(λi) = 0, (8)

where λi are the break-even concentrations.
Let us prove first that we can we assume that D = 1 and Sin = 1 in (7). Indeed, under the change of variables

S =
S

Sin
, t = Dt, pi(S) =

pi(SinS)

SinD
, f i(S) =

fi(SinS)

D
,

equations (7) take the form

dS

dt
=

1

SinD

dS

dt
= 1− S −

n∑
j=1

pj(S)xj ,

dxi
dt

=
1

D

dxi
dt

= f i(S)xi, i = 1 · · ·n.

Dropping the bars, one obtains (9). Recall that fi(0) < 0, so that the concentration of the species xi is decreas-
ing when the concentration of nutrient is too small. The smallest positive zero S = λi of fi is the break-even
concentration of the ith species xi. We adopt the convention λi =∞ if fi(S) < 0 for all S > 0.

Therefore, without loss of generality, we assume that D = 1 and Sin = 1 in (7). The system becomes

S′ = 1− S −
n∑
j=1

pj(S)xj ,

x′i = fi(S)xi, i = 1 · · ·n.
(9)

Coexistence of the n species is a fundamental question on the model (9) of competition for a single resource.
Looking for coexistence at positive equilibria we have to solve equations fi(S) = 0 simultaneously for all i = 1 · · ·n.
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In general, for n ≥ 2, these equations cannot be solved for the same value of S. Thus, generically, (9) can have the
following equilibria: the washout equilibrium

E0 = (1, 0, · · · , 0), (10)

where all species go extinct, and equilibria Ei, i = 1 · · ·n, where all components of Ei vanish, except for the first
and the (i+ 1)th, which are

S = S∗, xi =
1− S∗

pi(S∗)
,

where S∗ ∈]0, 1[ satisfies fi(S
∗) = 0. Hence, at any equilibrium point Ei, all but one species go extinct.

Since f(λi) = 0, the break-even concentration S∗ = λi gives rise to an equilibrium point Ei for the system, if and
only if λi < 1. A well-known open-problem in the theory of the chemostat is to prove the global asymptotic stability
of the equilibrium point Ei with the lowest break-even concentration. If this equilibrium is globally asymptotically
stable (GAS), then the CEP holds: only one species survives, namely the species which makes optimal use of the
resource. The reader is referred to [71], for complements and details on the CEP. Most of the results on the CEP
for (3) and (2) have been based on Lyapunov functions [5, 37, 50, 62, 66, 76, 78] . For a survey of constructing
Lyapunov functions in the chemostat, the reader is referred to [38]. We simply recall here that Hsu [37] proved the
CEP for the Monod case of (2), when the growth functions are

qi(S) =
aiS

bi + S
, (11)

and Wolkowicz and Lu [76] extended the result of [37] to (2) with more general growth functions.
Instead of a Lyapunov function approach, Fiedler and Hsu [26] applied a multi-dimensional Bendixon-Dulac

criterion to exclude periodic solutions. Under some technical conditions on the functions fi and pi they proved
that (9) does not possess positive non-stationary periodic orbits. In [62, 66, 63], it is shown that both Lyapunov
functions used by Hsu [37] and Wolkowicz and Lu [76] can be extended to the variable yields case model (3) or (9).

A necessary condition to avoid washout of the species, and global convergence towards the washout equilibrium
E0 defined by (10), is that λi < 1 for at least one species. Assume that the species are labeled so that 0 < λ1 < 1.
Then

E∗1 = (λ1, x
∗
1, 0, · · · , 0), (12)

where x1 = x∗1 = P1(λ1) is an equilibrium. Here

P1(S) =
1− S
p1(S)

. (13)

Using linearization of (9) about E∗1 one proves that:

Lemma 1. The equilibrium (12) is locally exponentially stable if and only if f ′1(λ1) > 0 and P ′1(λ1) < 0.

We consider the global asymptotic stability of E∗1 . The main result is

Theorem 1. Assume that (4) and (8) hold. Assume that λ1 < 1 and for all 0 < S < 1,

(S − λ1)f1(S) > 0, for S 6= λ1, (14)

(S − λ1)(P1(S)− P1(λ1)) < 0, for S 6= λ1, (15)

where P1(S) is defined by (13). Assume that there exist constants αi > 0 for each i ≥ 2 satisfying λi < 1, such that
for all 0 < S < 1,

f1(S)pi(S) > αifi(S)(1− S). (16)

Then the equilibrium E∗1 is GAS for (9) with respect to the interior of the positive cone.

The proof of this result can be obtained by using an extension of Lyapunov function of Wolkowicz and Lu [76],
see Section 2.1, or by using an extension of the Lyapunov function of Hsu [37], see Section 2.2. For details and
complements the reader is refered to [63].

Notice that the following property holds.

Lemma 2. The conditions λ1 < 1 and (16) imply that λ1 < λi for all i ≥ 2.
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Proof. Assume that there exists i ≥ 2 such that λi < λ1. Then, there exists S ≤ λ1 such that fi(S) > 0. Hence,
since S ≤ λ1 < 1, fi(S)(1 − S) > 0. On the other hand, using (8), f1(S) ≤ 0. Hence, the inequality (16) is
violated.

This lemma shows that the winning species x1 of Theorem 1 has the lowest break-even concentration, in
accordance with the CEP for models of competition for a single resource [71]. We recall that the smallest positive
zero S = λi of fi is the break-even concentration of the ith species xi. We adopt the convention λi =∞ if fi(S) < 0
for all S > 0. We have the following results.

Lemma 3. The non-negative cone is invariant under the flow of (9) and all solutions are defined and remain
bounded for all t ≥ 0.

Lemma 4. If for some species xi, the inequality (S − λi)fi(S) > 0 is satisfied for all 0 < S < 1, S 6= λi, then
S(t) < 1 for all sufficiently large t and all initial condition .

Lemma 5. For all solutions of (9), if λi ≥ 1 then xi(t)→ 0 as t→∞.

2.1 Extension of the Lyapunov function of Wolkowicz and Lu

The Lyapunov function used by Wolkowicz and Lu [76] in the constant yields case (2) is

VWL =
Sin − λ1
D1

∫ S

λ1

q1(σ)−D1

Sin − σ
dσ +

1

Y1

∫ x1

x∗1

ξ − x∗1
ξ

dξ +

n∑
i=2

ci
Yi
xi. (17)

with suitable constant ci > 0. Using the notations in (9), and since Sin was rescaled to 1, the function in the first

integral of (17) is simply equal to f1(σ)
1−σ . Multiplying (17) by the constant D1

1−λ1
= Y1

x∗1
, gives the following function

V =

∫ S

λ1

f1(σ)

1− σ
dσ +

1

x∗1

∫ x1

x∗1

ξ − x∗1
ξ

dξ +

n∑
i=2

αixi, (18)

where αi are constants to be determined. This is a Lyapunov function for (9) which permits to prove Theorem 1
as shown below.

Proof. (Theorem 1) From Lemmas 4 and 5 it follows that there is no loss of generality to assume that λi < 1 for
i = 1 · · ·n and to restrict our attention to 0 < S < 1. Consider the function V = V (S, x1, · · · , xn) given by (18)
where αi are positive constants satisfying (16). The function V is continuously differentiable for 0 < S < 1 and
xi > 0 and positive except at point E∗1 . The derivative of V along the trajectories of (9) is

V ′ =
f1(S)

1− S
S′ +

x1 − x∗1
x∗1x1

x′1 +

n∑
i=2

αix
′
i.

Since x∗1 = P1(λ1) and using (9), V ′ is written

V ′ =
f1(S)

1− S

[
1− S −

n∑
i=1

pi(S)xi

]
+

1

P1(λ1)
[x1 − P1(λ1)]f1(S) +

n∑
i=2

αifi(S)xi.

The terms f1(S)
1−S (1− S) and − 1

P1(λ1)
P1(λ1)f1(S) are canceled. Hence, using (13),

V ′ = x1f1(S)

[
1

P1(λ1)
− 1

P1(S)

]
+

n∑
i=2

xi
αifi(S)(1− S)− f1(S)pi(S)

1− S
.

Using (14) and (15), the first term of the above sum is non-positive for 0 < S < 1 and equals 0 if and only if
S = λ1 or x1 = 0. Using (16), the second term is non-positive for 0 < S < 1 and equals 0 if and only if xi = 0 for
i = 2 · · ·n. Hence V ′ ≤ 0 and V ′ = 0 if and only if xi = 0 for i = 1 · · ·n or S = λ1 and xi = 0 for i = 2 · · ·n. Using
the Krasovskii-LaSalle extension theorem, the ω-limit set of the trajectory is E∗1 .
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Theorem 1 has a special case [66] when the function fi has at most two positive zeros λi and µi, with λi ≤ µi ≤
+∞, such that

fi(S) < 0 if S /∈ [λi, µi], and fi(S) > 0 if S ∈]λi, µi[, (19)

with the convention that µi =∞ if equation fi(S) = 0 has only one solution and λi =∞ if it has no solution. This
class of functions corresponds to the case when fi(S) = qi(S)−Di and

qi(S) < Di if S /∈ [λi, µi], and qi(S) > Di if S ∈]λi, µi[.

It was often considered in the literature [10, 50, 76, 78]. For this class of systems the main result [66] is

Corollary 1 (Theorem 2.1 in [62]). Assume that (4), (8) and (19) hold. Assume that

λ1 < λ2 ≤ · · · ≤ λn, and λ1 < 1 < µ1, (20)

(S − λ1)(P1(S)− P1(λ1)) < 0, for S 6= λ1, (21)

where P1(S) is defined by (13). Assume that there exist constants ci > 0 for each i ≥ 2 satisfying λi < 1, such that

max
0<S<λ1

hi(S) < ci < min
λi<S<ρi

hi(S), (22)

where hi(S) = 1−λ1

p1(λ1)
f1(S)pi(S)
fi(S)(1−S) and ρi = min(µi, 1). Then the equilibrium E∗1 is GAS for (9) with respect to the

interior of the positive cone.

Proof. Assume that (20), (21) and (22) hold. Let us prove that (14), (15) and (16) hold. First, note that (21) is
the same as (15), and condition λ1 < 1 < µ1 in (20) is equivalent to (14). If λ1 < S < λi then fi(S) < 0 and
f1(S) > 0 so that (16) is satisfied for any choice of αi > 0. Similarly if µi < 1 and µi < S < 1 then fi(S) < 0 and
f1(S) > 0 so that (16) is satisfied for any choice of αi > 0. On the other hand, if 0 < S < λ1 then fi(S) < 0 and,
using hi(S) < ci in (22),

f1(S)pi(S) > ci
p1(λ1)

1− λ1
fi(S)(1− S).

Finally, if λi < S < ρi, then fi(S) > 0 and, using hi(S) > ci in (22),

f1(S)pi(S) > ci
p1(λ1)

1− λ1
fi(S)(1− S).

Thus (16) is satisfied for αi = ci
p1(λ1)
1−λ1

. The result follows from Theorem 1.

Condition (14) means that S = λ1 is the only zero of the growth function f1(S) for 0 < S < 1. Condition (15)
means that S = λ1 is the only zero of the function P1(S) given by (13), for 0 < S < 1. The technical condition
(16) is trivially satisfied in the single species n = 1. Following [66, 76] we give now a graphical interpretation of
(16). For each i ≥ 2 such that λi < 1, consider the function

gi(S) =
fi(S)

f1(S)

1− S
pi(S)

. (23)

The functions gi is defined on (0, λ1) ∪ (λ1, 1]. It tends to ±∞ when S tends λ1. Notice that the function hi in
Corollary 1 is simply a multiple of the reciprocal of gi. We use gi instead of hi, since the zeros of fi on [0, 1] are
not known as for the class of functions fi considered in Corollary 1. Since f1(S) < 0 over [0, λ1) and f1(S) > 0
over [λi, 1], the condition (16) is equivalent to

min
0<S<λ1

gi(S) >
1

αi
> max
λi<S<1

gi(S). (24)

For more details and the graphical depictions of the conditions, the reader is referred to [63]
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2.2 Extension of the Lyapunov function of Hsu

The Lyapunov function VH used by Hsu [37] in the Monod case of (2), where the growth functions are of the form
(11), is

VH =

∫ S

λ1

σ − λ1
σ

dσ + c1

∫ x1

x∗1

ξ − x∗1
ξ

dξ +

n∑
i=2

cixi, (25)

with constants

ci =
1

Yi

ai
ai −Di

, i = · · ·n, and λ1 =
b1D1

a1 −D1
.

It is readily checked that the function in the first integral of (25) is given by S−λ1

S = c1
f1(S)
p1(S)

, where

f1(S) =
a1S

b1 + S
−D1, p1(S) =

1

Y1

a1S

b1 + S
.

Hence, multiplying (25) by the constant 1/c1 gives the following function

V =

∫ S

λ1

f1(σ)

p1(σ)
dσ +

∫ x1

x∗1

ξ − x∗1
ξ

dξ +

n∑
i=2

cixi. (26)

where the constants ci/c1 in the last sum are simply denoted by ci to avoid unnecessary new notations. Under
some technical conditions, this function is a Lyapunov function for (9) and permits to obtain the global asymptotic
stability of the equilibrium point E∗1 as stated in the following result.

Theorem 2. Assume that (4) and (8) hold. Assume that λ1 < 1 and for all 0 < S < 1,

(S − λ1)f1(S) > 0, for S 6= λ1, (27)

(S − λ1)(P1(S)− P1(λ1)) < 0, for S 6= λ1, (28)

where P1(S) is defined by (13). Assume that there exist constants ci > 0 for each i ≥ 2 satisfying λi < 1, such that
for all 0 < S < 1,

f1(S)pi(S) > cifi(S)p1(S). (29)

Then the equilibrium E∗1 is GAS for (9) with respect to the interior of the positive cone.

Proof. From Lemmas 4 and 5 it follows that there is no loss of generality to assume that λi < 1 for i = 1 · · ·n
and to restrict our attention to 0 < S < 1. Consider the function V = V (S, x1, · · · , xn) given by (26) where ci are
positive constants satisfying (29). The function V is continuously differentiable in the positive cone and positive
except at point E∗1 , where it is equal to 0. The derivative of V along the trajectories of (9) is

V ′ =
f1(S)

p1(S)
S′ +

x1 − x∗1
x1

x′1 +

n∑
i=2

cix
′
i.

Since x∗1 = P1(λ1) and, using (9), V ′ is written

V ′ =
f1(S)

p1(S)

[
1− S −

n∑
i=1

pi(S)xi

]
+ [x1 − P1(λ1)]f1(S) +

n∑
i=2

cifi(S)xi.

The terms − f1(S)p1(S)
p1(S)x1 and x1f1(S) are canceled. Therefore, using (13),

V ′ = f1(S) [P1(S)− P1(λ1)] +

n∑
i=2

xi
cifi(S)p1(S)− f1(S)pi(S)

p1(S)
.

Using (27) and (28), the first term of the above sum is non-positive for 0 < S < 1 and equals 0 if and only if
S = λ1. Using (29), the second term is non-positive for 0 < S < 1 and equals 0 if and only if xi = 0 for i = 2 · · ·n.
Hence V ′ ≤ 0 and V ′ = 0 if and only if S = λ1 and xi = 0 for i = 2 · · ·n. By the Krasovskii-LaSalle extension
theorem, the ω-limit set of the trajectory is E∗1 .
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We have the following property.

Lemma 6. The conditions λ1 < 1 and (29) imply that λ1 < λi for all i ≥ 2.

Proof. If fi(S) > 0 for some S ≤ λ1, then f1(S) ≤ 0, so that the inequality (29) is violated.

This lemma shows that the winning species x1 in Theorem 2 has the lowest break-even concentration. Actually
Theorem 2 is a consequence of Theorem 1.

Proposition 1. Theorem 2 is a corollary of Theorem 1.

Proof. Assume that (27), (28) and (29) hold. Notice that (27) is the same as (14) and (28) is the same as (15).
Let us prove that (16) holds. If fi(S) < 0 and f1(S) > 0 (which occurs if λ1 < S < λi and may occur also for
λi < S < 1), then (16) holds for any choice of αi > 0. If 0 < S < λ1 then, by (28), P1(S) > P1(λ1) and, since

fi(S) < 0, fi(S)
P1(S)

> fi(S)
P1(λ1)

. Finally, if λi < S < 1 and fi(S) > 0 then, by (28), P1(S) < P1(λ1), and hence,
fi(S)
P1(S)

> fi(S)
P1(λ1)

. Therefore, in both cases λi < S < 1 and 0 < S < λ1,

fi(S)

P1(S)
>

fi(S)

P1(λ1)
.

Thus, using (29),

f1(S)pi(S) > cifi(S)p1(S) = ci
fi(S)

P1(S)
(1− S) > ci

fi(S)

P1(λ1)
(1− S).

Thus, (16) holds for αi = ci
P1(λ1)

. Hence, (28) and (29) imply (16).

Theorem 2 recovers the classical case Monod case [37]. Indeed, consider the particular case of (2), when the
growth functions qi(S) are given by (11). System (2), with D = 1 and Sin = 1, takes the form

S′ = 1− S −
n∑
j=1

ajS

bj + S

xj
Yj
,

x′i =

[
aiS

bi + S
−Di

]
xi, i = 1 · · ·n.

(30)

We consider the case where, for all i = 1 · · ·n, ai > Di. The break-even concentrations are

λi =
biDi

ai −Di
. (31)

Corollary 2 (Theorem 3.3 in [37]). Assume that

λ1 < λ2 ≤ · · · ≤ λn, λ1 < 1. (32)

Then the equilibrium E∗1 is GAS for (30) with respect to the interior of the positive cone.

Proof. Assume that (32) holds. Let us prove that (27), (28) and (29) hold. Since f1(S) = q1(S)−D1 is increasing,
the function f1(S) changes sign only at S = λ1 and hence, (27) is satisfied. Since

P1(S) = Y1(1− S)
b1 + S

a1S
and P ′1(S) = −Y1

S2 + b1
a1S2

< 0,

the function P1(S) changes sign only at S = λ1 and hence (28) is satisfied. Condition (29) is

(a1 −D1)S − b1D1

b1 + S

1

Yi

aiS

bi + S
> ci

(ai −Di)S − biDi

bi + S

1

Y1

a1S

b1 + S
, i ≥ 2.

After simplification by S
(b1+S)(bi+S)

, this condition is equivalent to

(a1 −D1)
ai
Yi

(S − λ1) > ci(ai −Di)
a1
Y1

(S − λi) i ≥ 2, (33)

which is satisfied for ci = (a1−D1)aiY1

(ai−Di)a1Yi
. Indeed, for this choice of the constants ci, (33) is simply

S − λ1 > S − λi ⇐⇒ λ1 < λi, i ≥ 2,

which is the same as (32). Thus (29) is satisfied. The global asymptotic stability of E∗1 follows from Theorem 2.
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2.3 Monod growth functions and linear yields

Models with linear yields were biologically motivated by [2, 13, 14] who noticed the existence of limit cycles for
some values of the parameters. The rigorous mathematical study was given in [58]. Consider the particular case of
(2), where the growth functions qi(S) are given by (11), and the yields yi(S) = qi(S)/pi(S) are linear

yi(S) = Yi(1 + ciS)

where Yi > 0 and ci ≥ 0. System (2), with D = 1 and Sin = 1, takes the form

S′ = 1− S −
n∑
j=1

ajS

bj + S

xj
Yj(1 + cjS)

,

x′i =

[
aiS

bi + S
−Di

]
xi, i = 1 · · ·n.

(34)

The break-even concentrations λi are given by (31). In this section we give analytical conditions on the parameters
of (34) so that conditions (14), (15) and (16) are satisfied and Theorem 1 can be applied.

We need the following technical result.

Lemma 7. The function Q(S) = (1−S)(b+S)(1+cS)
S is decreasing over [0, 1] if and only if

[c(1− b)− 1]
3 ≤ 27bc2.

This condition is equivalent to either b ≥ 1 or b < 1 and c ≤ ccrit(b), where ccrit(b) is the positive zero of

[c(1− b)− 1]
3

= 27bc2.

Proof. Since

Q′(S) = −2cS3 + (1 + c(b− 1))S2 + b

S2
, Q′′(S) = −

2
(
b− cS3

)
S2

,

the function Q(S) has an inflexion point for S = (b/c)
1
3 . The function Q(S) is nonincreasing over [0, 1] if and

only if its derivative at the inflexion point is nonpositive, that is, P ′
(

(b/c)
1
3

)
≤ 0. Straightforward computations

show that this condition is equivalent to [c(1− b)− 1]
3 ≤ 27bc2. If b ≥ 1 then the first term of the inequality is

negative and hence the inequality if satisfied for all c ≥ 0. If b < 1, then the inequality is satisfied if and only if
c ≤ ccrit(b).

The expression of ccrit(b) can be obtained by Cardan formulas. Notice that ccrit(0) = 1 and ccrit(b) is increasing
with b.

Theorem 3. Assume that
λ1 < λ2 ≤ · · · ≤ λn, λ1 < 1, (35)

either b1 ≥ 1 or for each i ≥ 1 satisfying λi < 1, ci ≤ ccrit(b1). (36)

Then the equilibrium E∗1 is GAS for (34) with respect to the interior of the positive cone.

Proof. Let us prove that (14), (15) and (24) hold. The Monod function f1(S) is increasing. Hence, (14) holds. The
function P1(S) is

P1(S) =
(1− S)(b1 + S)(1 + c1S)

S
.

By Lemma 7, it is decreasing if and only if either b1 ≥ 1 or b1 < 1 and c1 ≤ ccrit(b1). Hence, (15) holds. For each
i ≥ 2, the function gi(S) defined by (23) is

gi(S) =
fi(S)

f1(S)

1− S
pi(S)

=
Yi
ai

ai −Di

a1 −D1

S − λi
S − λ1

Qi(S)

where Qi(S) = (1−S)(b1+S)(1+ciS)
S . Assume that (36) holds. By Lemma 7, the function Qi(S) is decreasing.

Therefore,
min

0<S≤λ1

Qi(S) = Qi(λ1) > Qi(λi) = max
λi≤S<1

Qi(S).
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Since λ1 < λi, the function S 7→ S−λi

S−λ1
is increasing. Therefore,

min
0<S≤λ1

S − λi
S − λ1

=
λi
λ1

> 1 >
1− λi
1− λ1

= max
λi≤S<1

S − λi
S − λ1

.

Thus,

min
0<S<λ1

gi(S) ≥ Yi
ai

ai −Di

a1 −D1
min

0<S<λ1

S − λi
S − λ1

min
0<S<λ1

Qi(S) >
Yi
ai

ai −Di

a1 −D1
Qi(λ1),

and

max
λi<S<1

gi(S) ≤ Yi
ai

ai −Di

a1 −D1
max

λi<S<1

S − λi
S − λ1

max
λi<S<1

Qi(S) <
Yi
ai

ai −Di

a1 −D1
Q(λi).

Hence (24) holds. The result follows from Theorem 1.

Theorem 3 extends Corollary 2 which corresponds to the case where the yields are constant. Indeed, (35) is
the same as (32) and, for constant yields, ci = 0, so that the conditions (36) in Theorem 3 are satisfied. Notice
that (36) is a sufficient and not necessary condition for the existence of a gap between the minimum of gi(S) over
(0, λ1) and its maximum over [λi, 1].

3 Flocculation

Flocculation is a physical and chemical process in which the isolated or planktonic bacteria naturally aggregate,
reversibly, to one another to form macroscopic flocs. This mechanism of attachment could be to a wall like biofilms
[12, 44] or simply a formation of flocs or aggregates [72]. Jones et al. [46] studied the Freter model of biofilm
formation (that represents the functioning of intestine) where the parameter values used for the simulations have
been chosen from the experimental data of Freter et al. [27, 28].

In this section, we consider a flocculation mechanism and show how it can lead also to oscillations and non
intuitive phenomena of the dynamics. In [30], the effect of flocculation on the growth dynamics was analyzed
with an arbitrary number of bacteria in flocs. Haegeman and Rapaport [31] proposed a competition model of two
microbial species on a single nutrient with monotonic increasing uptake functions, where attached bacteria or flocs
of bacteria do not grow and are subject to the same dilution rate than isolated biomass. Assuming that the most
competitive species inhibits its growth by the formation of flocs, they could explain the coexistence between two
species. An extension of this model was studied in [24] without neglecting the substrate consumption of attached
bacteria, but assuming that they consume less substrate than the isolated bacteria, since the bacteria at the surface
of flocs have easier access to the substrate than the bacteria inside the flocs. More recently, Fekih-Salem et al. [19]
proposed a model of flocculation of n species that generalizes several models [70, 57, 46] that have been considered
in the literature. Assuming that the flocculation and deflocculation dynamics are fast compared to the growth
dynamics, Haegeman and Rapaport [31] could build a density-dependent model with the same dilution rate that
is studied in [51, 54]. Moreover, the study of a flocculation model [19] with different dilution rates leads also to
density-dependent dilution rates for the overall biomass [19], which is a new feature. In [21], the flocculation model
proposed in [31] is revisited by considering a substrate inhibition on the growth of the planktonic bacteria.

In order to generalize the flocculation modelling in the literature, we consider the following flocculation model
where the three first equations have been introduced in [19]:

Ṡ = D(Sin − S)− f(S)u− g(S)v − f2(S)x2
u̇ = (f(S)−D0)u− α(·)u+ β(·)v
v̇ = (g(S)−D1)v + α(·)u− β(·)v
ẋ2 = (f2(S)−D2)x2

(37)

where u(t) and v(t) denote, respectively, the concentrations of isolated and attached bacteria of the first species at
time t; f(·) and g(·) represent, respectively, the per-capita growth rates of the isolated and attached bacteria; D0,
D1 and D2 represent, respectively, the removal rates of isolated and attached bacteria of the first species, and of
the second species; α(·)u and β(·)v, denote, respectively, the flocculation and deflocculation rates.

Table 1 summarizes the modelling assumptions and describes the flocculation and deflocculation rates used in
the literature.
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Modelling assumptions Flocculation and deflocculation rates References

Di = D, i = 0, 1, x2 = 0 α(·) = a(1−W ),

β(·) = b+ g(S)(1−G(W )) Jones et al. [46]

Di = D, i = 0, 1, x2 = 0 α(·) = α(S), β(·) = β(S) Tang et al. [70]

D0 6= D, D1 = 0, x2 = 0 α(·) = a, β(·) = b Pilyugin and Waltman [57]

Di = D, i = 0, 1, 2, g(S) = 0 α(·) = au, β(·) = b Haegeman and Rapaport [31]

Di = D, i = 0, 1, 2 α(·) = au, β(·) = b Fekih-Salem et al. [24]

Di 6= D, i = 0, 1, x2 = 0 α(·) = α(S, v, u),

β(·) = β(S, u, v) Fekih-Salem et al. [19]

Di = D, i = 0, 1, f non monotone α(·) = au, β(·) = b Fekih-Salem et al. [21]

Table 1: Modelling assumptions and the description of flocculation and deflocculation rates. All growth rates are
monotonic increasing except in the last line where a substrate inhibition on the growth of the planktonic bacteria
is taken into consideration (f non monotone). Note that W = v/vmax where vmax denotes the maximum areal
biomass density of adherent bacteria and G(·) is a decreasing function. The terms a and b are positive constants.

3.1 Fast attachment and detachment dynamics

Literature reports flocculation time scales of the order of 1 to 10 min [16, 74] to be compared with bacterial growth
times of 1 h to 1 day, and with retention times of a few hours to a few days. Thus, considering that attachment
and detachment processes may be fast compared to biological time, it is shown in [31] that the reduced dynamics of
such systems amounts to have a single biomass compartment for each strain but with a density dependent growth
rate. This justifies the consideration of density dependent growth functions in the chemostat model, as already
introduced in the literature in the field of mathematical ecology [3] or waste-water process engineering [34]. In
can be shown [19] that when attachment and detachment rates are fast one can build a reduced model without
distinction between isolated and attached bacteria, but the resulting growth rate is density-dependent as well as
the dilution rate, due to the fact that attached and isolated bacteria have different removal rates. In the present
section we consider this reduction.

The general model for the flocculation is Ṡ = D(Sin − S)− f(S)u− g(S)v
u̇ = (f(S)−D0)u−A(S, v, u)u+B(S, u, v)v
v̇ = (g(S)−D1)v +A(S, v, u)u−B(S, u, v)v

.

If we assume that the dynamics of attachment and detachment is much faster than the growth of the species, one
can write

A(S, x, ε) =
α(S, u, v)

ε
, B(S, x, ε) =

β(S, u, v)

ε

where ε is expected to be a small non-negative number. The model becomes
Ṡ = D(Sin − S)− f(S)u− g(S)v

u̇ = (f(S)−D0)u− α(S, u, v)

ε
u+

β(S, u, v)

ε
v

v̇ = (g(S)−D1)v +
α(S, u, v)

ε
u− β(S, u, v)

ε
v

(38)

Notice that the dynamics of the total biomass x = u+ v is given by the equation

ẋ = (f(S)−D0)u+ (g(S)−D1)v.

Thus, u and v are fast variables, while S and x are slow ones. In the variables (S, x, p), where p = u/x is the
proportion of u in x, since u = px and v = (1− p)x, (38) is written

Ṡ = D(Sin − S)− f(S)px− g(S)(1− p)x
ẋ = (f(S)−D0)px+ (g(S)−D1)(1− p)x

ṗ = p(1− p) [(f(S)−D0)− (g(S)−D1)]− α(S, px, (1− p)x)

ε
p+

β(S, px, (1− p)x)

ε
(1− p)

(39)
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At time scale τ = t/ε we have: S′ = ε (D(Sin − S)− f(S)px− g(S)(1− p)x)
x′ = ε ((f(S)−D0)px+ (g(S)−D1)(1− p)x))
p′ = εp(1− p) [(f(S)−D0)− (g(S)−D1)]− α(S, px, (1− p)x)p+ β(S, px, (1− p)x)(1− p)

(40)

where the prime denotes the derivative with respect to τ :

S′ = εṠ, x′ = εẋ, p′ = εṗ

Therefore, the fast equation, obtained by letting ε = 0 is

p′ = −α(S, px, (1− p)x)p+ β(S, px, (1− p)x)(1− p)

where S and x are considered as constant parameters (S′ = 0, x′ = 0). This equation can be written

p′ = F (S, x, p) (41)

where
F (S, x, p) = β(S, px, (1− p)x)− (α(S, px, (1− p)x) + β(S, px, (1− p)x)) p

The slow manifold which is the set of steady states of the fast equation is given by equatuion

F (S, x, p) = 0 (42)

We have the following result

Proposition 2. Assume that for all S ≥ 0, u ≥ 0 and p ∈ [0, 1] we have

∂F

∂p
< 0 (43)

Then there exists a function
(S ≥ 0, x ≥ 0) 7→ p(S, x) ∈ (0, 1]

such that

p(S, 0) =
β(S, 0, 0)

α(S, 0, 0) + β(S, 0, 0)

and p = p(S, x) is a steady state of (41), that is to say

F (S, x, p(S, x)) = 0 for all S ≥ 0 and x ≥ 0. (44)

Moreover p = p(S, x) is a locally exponentially stable steady state of (41). This steady state is globally attractive.

Proof. Let S ≥ 0 and x ≥ 0 be fixed. Using (43) we see that the function

p ∈ [0, 1] 7→ F (S, x, p) ∈ R

is decreasing. We have
F (S, x, 0) = β(S, 0, x) > 0, F (S, x, 1) = −α(S, x, 0) ≤ 0

Therefore, by the intermediate value theorem, for all S ≥ 0 and x ≥ 0, there exists a unique p ∈ (0, 1], denoted by
p = p(S, x), such that

F (S, x, p(S, x)) = 0, for all S ≥ 0 and x ≥ 0

Hence (44) holds. If x = 0 then

G(S, 0, p(S, 0)) = β(S, 0, 0)− (α(S, 0, 0) + β(S, 0, 0)) p(S, 0) = 0

Hence

p(S, 0) =
β(S, 0, 0)

α(S, 0, 0) + β(S, 0, 0)

Since
∂F

∂p
< 0, for all S ≥ 0 and x ≥ 0

p = p(S, x) is a locally exponentially stable steady state of (41). Since p = p(S, x) is the unique steady state the
attractivity is global.
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Using the Tikhonov theory we can consider the reduced model, obtained by replacing in the equations of S and
x the fast variable p by p = p(S, x). This reduced system is{

Ṡ = D(Sin − S)− µ(S, x)x
ẋ = (µ(S, x)− d(S, x))x

(45)

where
µ(S, x) = p(S, x)f(S) + (1− p(S, x))g(S),

d(S, x) = p(S, x)D0 + (1− p(S, x))D1.

As a consequence of the Tikhonov’s theorem [55, 73, 75] we have the following result

Theorem 4. Let (S(t, ε), u(t, ε), v(t, ε)) be the solution of (38) with initial condition (S0, u0, v0) satisfying S0 ≥ 0,
u0 ≥ 0, and v0 ≥ 0. Let (S(t), x(t)) be the solution of the reduced problem (45) with initial conditions

S(0) = S0, x(t) = u0 + v0.

Then as ε→ 0,
S(t, ε) = S(t) + o(1), x(t, ε) = x(t) + o(1) (46)

uniformly for t ∈ [0, T ], and

u(t, ε) = x(t)p
(
S(t), x(t)

)
+ o(1), v(t, ε) = x(t)

(
1− p

(
S(t), x(t)

))
+ o(1) (47)

uniformly for t ∈ [t0, T ], where 0 < t0 < T are arbitrary but fixed and independent of ε. If the solution (S(t), x(t))
of the reduced problem converges to an asymptotically stable equilibrium, then we can put T = +∞ in the the
approximations (46) and (47) given.

Remark 1. Notice that

∂F

∂p
=

(
∂β

∂u
− ∂β

∂v

)
x(1− p)−

(
∂α

∂u
− ∂α

∂v

)
xp− (α(S, xp, x(1− p)) + β(S, xp, x(1− p)))

If α ≥ 0 and β > 0, then a sufficient condition for (43) to hold is

∂β

∂u
≤ ∂β

∂v
, and

∂α

∂u
≥ ∂α

∂v
(48)

In the following cases considered in the literature,

α(S, u, v) = α(S), β(S, u, v) = β(S)

α(S, u, v) = a, β(S, u, v) = b

α(S, u, v) = au, β(S, u, v) = b

α(S, u, v) = a(u+ v), β(S, u, v) = b

the conditions (48) are satisfied.

3.2 Flocculation with several species

We assume that n species are competing on a same limiting resource, and that each species is present in two forms:
isolated bacteria, of density ui, and bacteria in flocks, of density vi, for i = 1 · · ·n. We assume that isolated bacteria
can stick with isolated bacteria with flocks to form new flocks, with rate αi(·)ui. We assume also that flocks can
split and liberate isolated bacteria with rate βi(·)vi.

ui
αi(·)ui−−−−→ vi, ui

βi(·)vi←−−−− vi .

Then the equations are 
Ṡ = D(Sin − S)−

n∑
i=1

(fi(S)ui + gi(S)vi)

u̇i = (fi(S)−D0i)ui − αi(·)ui + βi(·)vi, 1 6 i 6 n
v̇i = (gi(S)−D1i)vi + αi(·)ui − βi(·)vi

(49)
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The dynamics of the total biomass densities xi = ui + vi of the species i is

ẋi = fi(S)ui + gi(S)vi −D0iui −D1ivi .

We consider here the case where

αi(·) =

n∑
j=1

Aijxj , βi(·) = Bi

where Aij and Bi are non-negative constants.

Remark 2. By letting the functions αi(·) depending on xj with j 6= i, we implicitly consider that flocks or aggregates
can incorporate individuals of different species.
The removal rate D1i has to be interpreted as the sum of the removal rate of the aggregates and the mortality rate
of each species i in its attached form.

Moreover, we assume that the dynamics of flocculation and detachment are fast compared with the dynamics
of the growth of bacteria, that is

Aij =
aij
ε
, Bi =

bi
ε
.

In the variables S, xi, ui, the system is written
Ṡ = D(Sin − S)−

n∑
i=1

[fi(S)ui + gi(S)(xi − ui)]

ẋi = fi(S)ui + gi(S)(xi − ui)−D0iui −D1i(xi − ui), i = 1 · · ·n

u̇i = (fi(S)−D0i)ui −
1

ε

n∑
j=1

aijxjui +
bi
ε

(xi − ui)

(50)

This is a slow/fast system with the variables S, xi are slow and the variables ui fast. The fast equations are

u′i = −
n∑
j=1

aijxjui + bi(xi − ui), i = 1 · · ·n (51)

where xi are considered as parameters. The slow manifold (or quasi steady-state) is given by

ui =
bixi

bi +

n∑
j=1

aijxj

, i = 1 · · ·n . (52)

Since one has
∑n
j=1 aijxj > 0, for i = 1 · · ·n, this slow manifold is globally asymptotically stable for (51). Thus,

the Tikhonov’s Theorem [55, 73, 75] applies and asserts that, after a fast transition toward the slow manifold, the
solutions are approximated by a solution of the reduced equation, which is obtained by replacing the fast variables
ui in (50) by the quasi steady states (52). One obtains the following reduced model Ṡ = D(Sin − S)−

n∑
i=1

µi(S, x)xi

ẋi = (µi(S, x)− di(x))xi, i = 1 · · ·n
(53)

where

µi(S, x) = fi(S)pi(x) + gi(S)(1− pi(x)), di(x) = D0ipi(x) +D1i(1− pi(x)), i = 1, · · · , n (54)

with

pi(x) =
bi

bi +

n∑
j=1

aijxj

, x = (x1, · · · , xn). (55)

Hence, we have shown the following result
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Theorem 5. Let (S(t, ε), u1(t, ε), v1(t, ε), · · · , un(t, ε), vn(t, ε)) be the solution of (49) with initial conditions S(0) >
0 and ui(0) > 0, vi(0) > 0, for 1 6 i 6 n. Let

(
S(t), x1(t), · · · , xn(t)

)
be the solution of the reduced problem (53)

with initial conditions

S(0) = S(0), xi(t) = ui(0) + vi(0), 1 6 i 6 n.

Then as ε→ 0

S(t, ε) = S(t) + o(1), xi(t, ε) = xi(t) + o(1), 1 6 i 6 n

uniformly for t ∈ [0, T ], and for all 1 6 i 6 n, as ε→ 0

ui(t, ε) =
bixi(t)

bi +
∑n
j=1 aijxj(t)

+ o(1), vi(t, ε) =

(∑n
j=1 aijxj(t)

)
xi(t)

bi +
∑n
j=1 aijxj(t)

+ o(1)

uniformly for t ∈ [t0, T ], where T > t0 > 0 are arbitrarily fixed. If the solution of the reduced problem tends to an
asymptotically stable equilibrium, then we can put T = +∞ in the approximations given above.

Since the planktonic bacteria have a better access to the substrate than the bacteria in flocks one assumes
fi(S) > gi(S). Notice that one has ∂pi

∂xj
< 0 for any i, j. Hence

∂µi
∂xj

= (fi(S)− gi(S))
∂pi
∂xj

< 0

with
∂µi
∂S

= f ′i(S)pi(x) + g′i(S)(1− pi(x)) > 0 .

As for the one species case this approach give a motivation to density dependent growth function models, that may
lead to species coexistence, as discussed in the following section.

4 Density-dependent growth functions

In this section, we will consider models with density-dependent growth functions. The general model is the following
extension of (2)  Ṡ = D(Sin − S)−

n∑
i=1

µi(S, x1, . . . , xn)xi

ẋi = [µi(S, x1, . . . , xn)−Di]xi, i = 1, . . . , n

(56)

where the growth function µi(S, x1, . . . , xn) can depend now not only on the substrate S but also on the species
concentrations xi, i = 1, . . . , n. The function µi is assumed to be increasing in the variable S and decreasing in
each variable xj . This model was considered in a series of paper by Lobry et al. [20, 51, 52, 53, 54, 35]. Now, for
(56) it is possible to have a coexistence steady state since at steady state we must have

[µi(S, x1, . . . , xn)−Di]xi = 0, i = 1, . . . , n.

If all xi are positive then

µi(S, x1, . . . , xn) = Di, i = 1, . . . , n

is a set of n equations with n variables xi which could have a positive solution xi = Xi(S), i = 1, . . . , n. Replacing
xi by Xi(S) in the first equation leads the following equation in the single variable S

D(Sin − S)−
n∑
i=1

DiXi(S) = 0.

Solving this equation gives S and then the possibility of a positive steady state.
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4.1 No interspecific competition : the steady-state characteristic

In [54] the authors considered the case where µi(S, xi) depends only on the concentration of species i. They
introduced the concept of steady-state characteristic for each species and showed how to use it to give sufficient
conditions for coexistence and to determine the asymptotic behavior of the system. Global results were also
obtained when Di = D for all species [53]. In [19] it is shown that the method of steady-state characteristic is
still applicable in the case where both the growth rate µi(S, xi) and the removal rate Di = di(xi) of each species
depend on the density of the same species. In [1] it is shown that the method of steady-state characteristic permits
a quite comprehensive analysis of the model considered in [47], where the growth rate µi(S) depends only on S but
the removal rate of xi is of the form Di + aixi. The term aixi corresponds to the so-called crowding effect.

We consider the model  Ṡ = D(Sin − S)−
n∑
i=1

µi(S, xi)xi

ẋi = [µi(S, xi)− di(xi)]xi i = 1, · · · , n
(57)

This model was studied in [51], in the case when di(xi) = D. We assume that

H5: µi(0, xi) = 0 and µi(S, xi) > 0 for all S > 0 and all xi > 0.

H6:
∂µi
∂S

> 0 and
∂µi
∂xi

< 0 for all S > 0 and all xi > 0.

H7: di(0) = D0i, di(+∞) = D1i < D0i 6 D, di(xi) > 0, d′i(xi) < 0 and [xidi(xi)]
′ > 0 for all xi > 0.

Let us denote by
fi(S) = µi(S, 0) and gi(S) = µi(S,+∞).

The functions fi(.) and gi(.) are increasing and positive for all S > 0. If equations fi(S) = D0i and gi(S) = D1i

have solutions, one let
λ0i = f−1i (D0i) and λ1i = g−1i (D1i)

otherwise one let λki = +∞, k = 0, 1. As for the case of one species (see Assumption H3), we add the following
assumption

H8: λ0i < λ1i for i = 1 · · ·n. For all S ∈]λ0i, λ1i[ and xi > 0, one has d′i(xi) >
∂µi

∂xi
(S, xi).

If the inequality λ0i < λ1i is reversed for some i = 1 · · ·n, then the situation is much more difficult and will be
studied in the future. Denote

λ̃0 = max{λ0i; i = 1, · · · , n} and λ̃1 = min{λ1i; i = 1, · · · , n}.

We assume that

H9: λ̃0 < min(λ̃1, Sin).

We consider here the existence of a positive equilibrium. The equilibria of (57) are solutions of the set of equations D(Sin − S) =

n∑
i=1

µi(S, xi)xi

µi(S, xi) = di(xi) or xi = 0 i = 1, · · · , n.
(58)

Thus we have to solve the equations
µi(S, xi) = di(xi).

Since H6, by the implicit function theorem, this equation gives a function S = φi(xi) defined for all xi > 0, such
that φi(0) = λ0i, φi(+∞) = λ1i and

φ′i(xi) =
d′i(xi)−

∂µi
∂xi

(S, xi)

∂µi
∂S

(S, xi)

> 0.
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The sign of φ′(·) is given by assumptions H8. We define the function Xi : S 7→ Xi(S) on [0, λ1i[ by

Xi : [0, λ1i[ −→ R+

S −→ Xi(S) =

{
0 if 0 6 S 6 λ0i
xi = φ−1i (S) if λ0i 6 S < λ1i.

Let hi(S) = µi(S,Xi(S))Xi(S). Since Xi(·) is increasing over [λ0i, λ1i[, so is hi(·) over this interval. Indeed, one
has

h′i(S) =

(
∂µi
∂S

+
∂µi
∂xi

X ′i(S)

)
Xi(S) + µi (S,Xi(S))X ′i(S).

Moreover, for S ∈]λ0i, λ1i[, µi (S,Xi(S)) = di(Xi(S)) and

X ′i(S) =

∂µi
∂S

(S,Xi(S))

d′i(Xi(S))− ∂µi
∂xi

(S,Xi(S))

> 0.

Then
h′i(S) = [d′i (Xi(S))Xi(S) + di (Xi(S))]X ′i(S), for S ∈]λ0i, λ1i[.

Using H7,
[di(xi)xi]

′ = d′i(xi)xi + di(xi) > 0, for xi > 0.

Hence the sign of h′i(S) is the same as the sign of X ′i(S), that is, hi(·) is increasing over [λ0i, λ1i[, (see Fig. 1).

Figure 1: The steady state characteristics gives the necessary and sufficient condition of existence of the positive
equilibrium of (57) for n = 3.

Consider now the function

H(S) =

n∑
i=1

hi(S)−D(Sin − S).

Lemma 8. Equation H(S) = 0 admits a unique solution S∗ ∈]0, λ̃1[.

Proof. Since hi(S) = 0 for S ∈ [0, λ0i] and hi(S) is increasing over [λ0i, λ1i[, the function H(·) is increasing over
(0, λ̃1), and

H(0) = −DSin < 0 and lim
S→λ̃1

H(S) = +∞.

Hence, there exists a unique S∗ ∈]0, λ̃1[ such that H(S∗) = 0.

We have the following result :

Proposition 3. Assume that H5-H9 hold. System (57) has a unique positive equilibrium if and only if

n∑
i=1

µi

(
λ̃0, Xi(λ̃0)

)
Xi(λ̃0) < D(Sin − λ̃0). (59)
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Proof. A positive equilibrium E∗ = (S∗, x∗1, · · · , x∗n), must satisfy

D(Sin − S∗) =

n∑
i=1

µi(S
∗, x∗i )x

∗
i (60)

and

µi(S
∗, x∗i ) = di(x

∗
i ). (61)

Equation (61) is equivalent to x∗i = Xi(S
∗). Thus, (60) can be written

D(Sin − S∗) =

n∑
i=1

µi(S
∗, Xi(S

∗))Xi(S
∗) =

n∑
i=1

hi(S
∗),

that is H(S∗) = 0. Since
∑n
i=1 hi(S

∗) > 0, then one must have

S∗ < Sin and S∗ > λ̃0.

Notice that λ̃0 < S∗ < λ̃1 and S∗ < Sin are satisfied if H9 holds. Then, since H(S) est increasing over [0, λ̃1[,

λ̃0 < S∗ ⇐⇒ H(λ̃0) < H(S∗) = 0.

Therefore there exists a unique positive equilibrium S∗ exactly when H(λ̃0) < 0, which is equivalent to (59).

We study now the asymptotic behavior of the positive equilibrium. First, we establish the following result :

Lemma 9. Consider the matrix

A =


−D −

∑n
i=1 ai c1 c2 · · · cn

a1 −b1 0 · · · 0
a2 0 −b2 · · · 0
...

...
...

. . .
...

an 0 0 · · · −bn

 (62)

Assume that D > 0 and for i = 1 · · ·n, ai > 0, bi > 0 and ci 6 bi. Then all eigenvalues of A have negative real
part.

The proof is given in [19].
Then, we state the following result :

Proposition 4. If E∗ exists, then it is locally exponentially stable.

Proof. . Since µi(S
∗, x∗i ) = di(x

∗
i ), the Jacobian of the system (57) at E∗ is of the form (62) where

ai =
∂µi
∂S

(S∗, x∗i )x
∗
i bi = −∂µi

∂xi
(S∗, x∗i )x

∗
i + x∗i d

′
i(x
∗
i ), ci = −∂µi

∂xi
(S∗, x∗i )x

∗
i − di(x∗i ).

Since H6, ai > 0. Since H7, di(x
∗
i ) + x∗i d

′
i(x
∗
i ) > 0, then −di(x∗i ) < x∗i d

′
i(x
∗
i ) and hence ci < bi. Since H8, bi > 0.

The result follows from Lemma 9.

4.2 Intra and interspecific competition

General model (56) was considered in [51] only through numerical simulations. These authors considered a particular
situation where the growth functions are of the form

µi(S, x1, . . . , xn) = νi

S, xi + α
∑
j 6=i

xj

 (63)

where α is a nonnegative parameter which denotes the interspecific competition. They observed that the coexistence
which was predicted in [54], when α = 0 (only intraspecific competition is present), is still a property of the model
when α is small enough but it is no longer the case when α is sufficiently large. The particular case of (56,63) where
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n = 2 (two species) and D1 = D2 = D, has been studied theoretically in [18, 22]. In these works, the authors gave
theoretical explanations for the phenomenon, which was numerically observed in [51], where the coexistence holds
for α small enough while the exclusion of one species occurs for α large enough. Growth functions of form (63) and
density dependent yields were considered also in [61].

Actually, we have not at our disposal any general mathematical study of (56). The paper [20] can be considered
as the first step towards a mathematical study of (56). In this section we consider the two species model

Ṡ = D(Sin − S)− µ1(S, x1, x2)x1 − µ2(S, x2, x1)x2

ẋ1 = [µ1(S, x1, x2)−D1]x1

ẋ2 = [µ2(S, x2, x1)−D2]x2.

(64)

We make the following assumptions.

(H0) For i = 1, 2, Di = D + ai, where ai ≥ 0.

(H1) For i = 1, 2, j = 1, 2, i 6= j, µi(0, xi, xj) = 0 and µi(S, xi, xj) > 0 for all S > 0, x1 > 0 and x2 > 0.

(H2) For i = 1, 2, j = 1, 2, i 6= j, ∂µi

∂S (S, xi, xj) > 0, ∂µi

∂xi
(S, xi, xj) 6 0 and ∂µi

∂xj
(S, xi, xj) 6 0 for all S > 0, x1 > 0

and x2 > 0.

Condition (H0) means that the dilution rate of the species is the sum of the dilution rate of the chemostat and a
specific mortality rate of the species. This condition will be used only in the stability analysis of positive steady
states, see Proposition 9 below. Condition (H1) means that the growth can take place if and only if the substrate
is present. Condition (H2) means that the growth rate of each species increases with the concentration of substrate
and is inhibited by intra- and interspecific competition. We have the following result:

Proposition 5. For any nonnegative initial condition, the solutions of (64) remain nonnegative and are positively
bounded. Moreover, the set

Ω =
{

(S, x1, x2) ∈ R3
+ : S + x1 + x2 6 Sin

}
is positively invariant and is a global attractor for (64).

The proof is given in [20].
The steady states of (64) are the solutions of the set of equations

0 = D(Sin − S)− µ1(S, x1, x2)x1 − µ2(S, x2, x1)x2

0 = [µ1(S, x1, x2)−D1]x1

0 = [µ2(S, x2, x1)−D2]x2.

(65)

Therefore, (64) has the following types of steady states:

• E0 = (Sin, 0, 0), called the washout, where both populations are extinct: x1 = x2 = 0. This steady state
always exists.

• E1 = (S̃1, x̃1, 0), where second population is extinct: x2 = 0 and x̃1 > 0.

• E2 = (S̃2, 0, x̃2), where first population is extinct: x1 = 0 and x̃2 > 0.

• E∗ = (S∗, x∗1, x
∗
2), where both populations survive: x∗1 > 0, x∗2 > 0.

The components S = S̃i and x = x̃i of a boundary steady state Ei are the solutions of (65) with xi > 0 and xj = 0,

j 6= i. Therefore S̃i and x̃i are the solutions of equations Therefore

S̃i = Sin −
Di

D
x̃i. (66)

and xi = x̃i must be a solution of

µi

(
Sin −

Di

D
xi, xi, 0

)
= Di. (67)

S̃i is positive if and only if x̃i < DSin/Di, that is to say, (67) has a solution in the interval (0, DSin/Di). From
(H1) and (H2) we know that the function

xi 7→ µi

(
Sin −

Di

D
xi, xi, 0

)
−Di, i = 1, 2.
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is decreasing from µi(Sin, 0, 0) −Di for xi = 0, to ψi(DSin/Di) = −Di for xi = DSin/Di. Thus, there exists an
xi = x̃i ∈ (0, DSin/Di) satisfying (67) if and only if

µi(Sin, 0, 0) > Di (68)

holds. If such an x̃i exists then it is unique. Therefore, we obtain the following result which gives the condition of
existence of a boundary steady state Ei.

Proposition 6. Let Ei be a steady state of (64) with x̃i > 0 and xj = 0, j 6= i. Then S̃i is given by (66) where
xi = x̃i is the solution of (67). This steady state exists if and only if (68) holds. If it exists then it is unique.

The components S = S∗, x1 = x∗1 and x2 = x∗2 of a coexistence steady state E∗ must be the solutions of (65)
with x1 > 0 and x2 > 0. Therefore S∗ is given by

S∗ = Sin −
D1

D
x∗1 −

D2

D
x∗2. (69)

and (x1 = x∗1, x2 = x∗2) must be a solution of {
f1(x1, x2) = 0

f2(x1, x2) = 0
(70)

where

fi(x1, x2) := µi

(
Sin −

D1

D
x1 −

D2

D
x2, xi, xj

)
−Di, for i = 1, 2, j = 1, 2, i 6= j. (71)

The functions (71) are defined on the set

M =

{
(x1, x2) ∈ R2

+ :
D1

D
x1 +

D2

D
x2 6 Sin

}
. (72)

S∗ is positive if and only if D1

D x∗1 + D2

D x∗2 < Sin, that is to say, (70) has a solution in the interior Mo of M , defined
by (72). To solve (70) in this open Mo, we need the following result:

Lemma 10. Assume that (68) holds for i = 1, 2 and let x̃i be a solution of (67). The equation fi(x1, x2) = 0
defines a smooth decreasing function

Fi : [0, x̃i]→ R, xi 7→ Fi(xi)

such that Fi(x̃i) = 0 and the graph γi of Fi lies in Mo. More precisely, (x1, F1(x1)) ∈Mo [resp. (F2(x2), x2) ∈Mo]
for all xi ∈ (0, x̃i).

The proof is given in [20].

Remark 3. Notice that Fi : [0, x̃i]→ [0, x̄j ], xi 7→ Fi(xi), where x̄j = Fi(0) is the unique solution of

µi

(
Sin −

Dj

D
xj , 0, xj

)
= Di. (73)

Using the definitions (71) of f1 and f2 one sees that x̃1, x̃2 which are the solutions of (67) and x̄1, x̄2 which are
the solutions of (73) are simply the solutions of the following equations

f1(x̃1, 0) = 0, f2(0, x̃2) = 0, f1(0, x̄2) = 0, f2(x̄1, 0) = 0.

These quantities represent the coordinates of the intersections of the curves γ1 and γ2 with the coordinates axes.
Their relative positions play a major role in the behavior of the system.

The following four cases must be distinguished (see Figures 2 and 3):

Case 1: x̄1 > x̃1 and x̄2 > x̃2, Case 2: x̄1 < x̃1 and x̄2 < x̃2, (74)

Case 3: x̄1 < x̃1 and x̄2 > x̃2, Case 4: x̄1 > x̃1 and x̄2 < x̃2. (75)

We restrict our attention to the generic situation, where all intersections of curves γ1 and γ2 are transverse. We
give the following definitions:
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Case 1.ax2

δ

γ1

γ2

E2 E∗

x̄2

x̃2

E0 E1
x̃1 x̄1

x1

Case 1.bx2

δγ1

γ2E2
E∗

E∗∗

x̄2

x̃2

E0
E∗∗∗
E1
x̃1 x̄1

x1

Case 2.ax2

δ
γ2

γ1

E2

E∗

x̃2

x̄2

E0 E1
x̄1 x̃1

x1

Case 2.bx2

δ
γ2

γ1

E2

E∗

E∗∗

x̃2

x̄2

E0
E∗∗∗

E1
x̄1 x̃1

x1

Figure 2: Case 1 : x̄1 > x̃1 and x̄2 > x̃2: (a) unique intersection, (b) an odd number of intersections. Case 2 :
x̄1 < x̃1 and x̄2 < x̃2: (a) unique intersection, (b) an odd number of intersections.

Case 3.ax2

δ

γ1

γ2

E2

x̄2

x̃2

E0 E1
x̄1 x̃1

x1

Case 3.bx2

δ
γ1

γ2
E2 E

∗

x̄2

x̃2

E0

E∗∗

E1
x̄1 x̃1

x1

Case 4.ax2

δ

γ2

γ1

E2x̃2

x̄2

E0 E1
x̃1 x̄1

x1

Case 4.bx2

δ
γ2

γ1

E2

E∗

x̃2

x̄2

E0

E∗∗

E1
x̃1 x̄1

x1

Figure 3: Case 3 : x̄1 < x̃1 and x̄2 > x̃2: (a) no intersection, (b) an even number of intersections. Case 4 : x̄1 > x̃1
and x̄2 < x̃2: (a) no intersection, (b) an even number of intersections.

Definition 1. A positive steady state E∗ = (S∗, x∗1, x
∗
2) of (64) is said to be blue [resp. red] if and only if, on the

right of (x∗1, x
∗
2), the tangent of γ1 at point (x∗1, x

∗
2) is above [resp. under] the tangent of γ2 at point (x∗1, x

∗
2).

The positive steady states are alternatively red and blue and are represented in red and blue colors respectively
in Figures 2 and 3. We have the following characterization of red and blue positive steady states.

Lemma 11. A positive steady state E∗ = (S∗, x∗1, x
∗
2) is blue if and only if F ′1 (x∗1)F ′2 (x∗2) < 1. It is red if and only

if F ′1 (x∗1)F ′2 (x∗2) > 1.

Proof. The curves γ1 and γ2 are the graphs of the functions x1 7→ F1(x1) and x1 7→ F−12 (x1), respectively, where F−12

is the inverse function of F2. Therefore, the positive steady state is blue if and only if F ′1(x∗1) >
(
F−12

)′
(x∗1) = 1

F ′2(x
∗
2)

.

Since F ′2(x∗2) < 0 this condition is equivalent to F ′1 (x∗1)F ′2 (x∗2) < 1. The same proof holds for red positive steady
states.

We have the following result:

Theorem 6. Assume that (H0), (H1), (H2) and (68), for i = 1, 2 hold.

1. Blue positive steady states are unstable. If for all S, x1, x2,

∂µ1

∂x1
<
∂µ1

∂x2
and

∂µ2

∂x2
<
∂µ2

∂x1
(76)

hold, or D1 = D2 = D, then red positive steady states are LES, that is to say, positive steady states are
alternatively unstable and LES.

2. If Case 1 holds, the system can have generically an odd number of positive steady states, while E1 and E2 are
unstable. The positive steady states at the left-hand end and right-hand end are red (see Figure 2, Case 1).
If, in addition, for all S, x1, x2,

∂µ1

∂x1
<
D1

D2

∂µ1

∂x2
and

∂µ2

∂x2
<
D2

D1

∂µ2

∂x1
(77)

hold, then the positive steady state is unique (see Figure 2, Case 1.a).
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3. If Case 2 holds, the system can have generically an odd number of positive steady states, while E1 and E2 are
LES. The positive steady states at the left-hand end and right-hand end are blue (see Figure 2, Case 2). If,
in addition, for all S, x1, x2,

∂µ1

∂x1
>
D1

D2

∂µ1

∂x2
and

∂µ2

∂x2
>
D2

D1

∂µ2

∂x1
(78)

hold, then E∗ is unique and unstable (see Figure 2, Case 2.a).

4. If Case 3 [resp. Case 4] holds, then generically the system has no positive steady state or an even number
of positive steady states where E1 is LES [resp. unstable] and E2 is unstable [resp. LES]. The positive steady
state at the right-hand [resp. left-hand] end, if it exists, is blue (see Figure 3). If, in addition, (77) or (78)
hold, then the system has no positive steady state (see Figure 3, Case 3.a [resp. Case 4.a]).

The proof which uses some results given hereafter is postponed until the end of this section.

Remark 4. When D1 = D2 = D, the stability of positive steady states is completely characterized: a positive
steady state is LES if and only if it is red. When Di are distinct, we do not have at our disposal a necessary and
sufficient condition for stability: the complete characterization of local behavior of E∗ remains an open problem.
This problem is solved when conditions (76) hold since in this case we know also that a positive steady state is LES
if and only if it is red. However, we were not able to find an example where Di are distinct and (76) does not hold,
for which there exists a red positive steady state which is unstable. This question deserves further investigations.

We emphasize on the two following particular situations: Theorem 6 asserts that if Case 2 holds and conditions
(78) are satisfied then E∗ exists, is unique and is unstable. It asserts also that if Case 1 holds and both conditions (76)
and (77) are satisfied then E∗ exists, is unique and is LES. These properties deserve the biological interpretations
given in the following remark.

Remark 5. Since the partial derivatives ∂µi

∂xj
, i, j = 1, 2 are nonpositive, conditions (78) are equivalent to

0 6 −∂µ1

∂x1
<
D1

D2

(
−∂µ1

∂x2

)
and 0 6 −∂µ2

∂x2
<
D2

D1

(
−∂µ2

∂x1

)
which means that the intraspecific competition in each population of micro-organisms, measured by the partial

derivative
(
−∂µi

∂xi

)
, is dominated by the interspecific competition, measured by the partial derivative

(
− ∂µi

∂xj

)
,

i = 1, 2, j = 1, 2, i 6= j. If these conditions are satisfied then Theorem 6 asserts that, if the positive steady state
exists, it is unique and unstable.
Note also that conditions (76) together with conditions (77) are equivalent to

−∂µ1

∂x1
> max

(
D1

D2
, 1

)(
−∂µ1

∂x2

)
> 0 and − ∂µ2

∂x2
> max

(
D2

D1
, 1

)(
−∂µ2

∂x1

)
> 0.

Hence, Theorem 6 asserts that in the case where the intraspecific competition is dominant with respect to inter-
specific competition then, if the positive steady state exists, it is unique and LES. Note that conditions (76) and
(77) cannot hold if ∂µ1

∂x1
= 0 or ∂µ2

∂x2
= 0. On the other hand, conditions (78) cannot hold if ∂µ1

∂x2
= 0 or ∂µ2

∂x1
= 0.

In order to show Theorem 6, we need the following three propositions whose proofs are given in [20].

Proposition 7. If (77) holds then, if Case 1 holds, the positive steady state exists and is unique and, if Case 3 or
Case 4 hold, there is no positive steady state. This condition is incompatible with Case 2.
If (78) holds then, if Case 2 holds, the positive steady state exists and is unique and, if Case 3 or Case 4 hold,
there is no positive steady state. This condition is incompatible with Case 1.

Proposition 8. E0 is LES if and only if µi(Sin, 0, 0) < Di, i = 1, 2, that is, E1 and E2 do not exist. For i = 1, 2,
Ei is LES if and only if x̃i > x̄i.

Proposition 9. Let E∗ = (S∗, x∗1, x
∗
2) be a positive steady state. Assume that (H0) holds.

1. If F ′1 (x∗1)F ′2 (x∗2) < 1, then E∗ is unstable.

2. If (76) holds or D1 = D2 = D, then E∗ is LES if and only if F ′1 (x∗1)F ′2 (x∗2) > 1.

Proof of Theorem 6. From item 1 of Proposition 9 and Lemma 11, it follows that blue positive steady states
are unstable. From item 2 of Proposition 9 and Lemma 11, if (76) holds or D1 = D2 = D, then it follows that red
positive steady states are LES. This proves item 1 of the theorem.
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If Case 1 [resp. Case 2] holds, then there exists at least one positive steady state. Using Proposition 8, we deduce
that E1 and E2 exist and are unstable [resp. LES]. The steady states at the left-hand end and right-hand end are
red [resp. blue], since on the right of the corresponding intersections of curves γ1 and γ2, the tangent of γ1 is under
[resp. above] the tangent of γ2. If (77) [resp. (78)] holds, then using Proposition 7, we deduce that E∗ is the unique
positive steady state [resp. and is unstable]. If (77) [resp. (78)] does not hold, then in the generic case, the curves
γ1 and γ2 can have an odd number of intersections. This proves items 2 and 3 of the theorem.
If Case 3 [resp. Case 4] holds, then generically the curves γ1 and γ2 have no intersection or an even number of
intersections. From Proposition 8, E1 is LES [resp. unstable] and E2 is unstable [resp. LES]. If (77) or (78) hold,
then using Proposition 7, we deduce that the system has no positive steady state. The positive steady state at the
right-hand [resp. left-hand] end is blue, since on the right of the corresponding intersection of curves γ1 and γ2,
the tangent of γ1 is above the tangent of γ2. This proves item 4 of the theorem. �
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