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What is a time series ?

A time series is a chronological sequence of quantitative
observations xt , observed over a period of time (weekly,
monthly, quarterly, or yearly).
Time series is a sequence

{x1, x2, . . . , xT} or xt , t = 1, 2, . . . ,T

where t is an index denoting the period in time in which x
occurs.
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Main Objective of Time Series

Predict/forecast the future given current and past
observations.
The properties of observed data are used to predict future
observations of relevant variables.
Aim to predict the response given the observed variables.
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Types of Time Series

There are two types of time series data :

1 Univariate time series, are those where only one variable is
measured over time.

2 Multivariate time series, are those where more than one
variable are measured simultaneously.
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Areas of Application of Time Series

Time series data provide useful information about the physical,
biological, social or economic systems generating the time series,
such as :

Economics : profits, imports, exports, stock exchange indices,
Sociology : school enrollments, unemployment, crime rate,
Environment : amount of pollutants, such as CO2 emissions,
Medicine : blood pressure measurements over time for
evaluating drugs to control hypertension.
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Examples of Time series
Here are a few examples of plots of time series data :
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Examples of Time series
Here are a few examples of plots of time series data :
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Components of a Time series

There are four components to a time series :

Trend.
Cycle.
Seasonal Variations.
Irregular Fluctuations.
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Components of a Time series
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Stationarity

Let {Xt} = {. . . ,Xt−1,Xt ,Xt+1, . . .} denote a sequence of random
variables (a time series) indexed by some time subscript t.
A Time Series is stationary if has the following conditions :

1 Constant µ (mean) for all t.
2 Constant σ (variance) for all t.
3 The autocovariance function between Xt1 and Xt2 only

depends on the interval t1 and t2.
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Stationarity
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Stationarity Examples

The typical form of a stationary time series, commonly known as
white noise.
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Stationarity Examples

Nonconstant variance series (Heterocedasticity).
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Stationarity Examples

Nonconstant mean series (Trend).
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Stationarity Examples

Nonconstant mean series (Trend).
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Stationarity Examples

Nonconstant mean and variance series.
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Why Stationarity is Important in Time Series

Key Reasons Why Stationarity Matters
• Predictability and Consistency : Ensures patterns are stable

over time, aiding in reliable forecasting.
• Model Validity : Many time series models (e.g., ARMA,
ARIMA, GARCH) assume stationarity for accurate estimation.
• Statistical Inference : Hypothesis testing and confidence
intervals rely on stationarity assumptions.
• Simplified Analysis : Stationary series have simpler patterns
that are easier to model.
• Identifying True Relationships : Reduces the risk of
spurious correlations in multivariate analysis.
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Testing for Stationarity

Common Methods to Test for Stationarity
• Visual Inspection : Plotting the data to check for trends and
seasonality.
• Augmented Dickey-Fuller (ADF) Test : Formal test for the

presence of unit roots.
• Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Test : Checks
for trend and level stationarity.
• Correlogram Analysis : Examining autocorrelation and
partial autocorrelation plots.

Ensuring stationarity is often the first step in time series modeling
for meaningful forecasting and analysis.
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Autocorrelation ACF

The coefficient of correlation between two values in a time
series is called the autocorrelation function (ACF).
For example the ACF for a time series Xt is given by :

Corr(Xt ,Xt−k).

This value of k is the time gap being considered and is called
the lag.
A lag 1 autocorrelation (i.e., k = 1 in the above) is the
correlation between values that are one time period apart.
A lag k autocorrelation is the correlation between values that
are k time periods apart.
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Autocorrelation ACF

ACF values fall between -1 and +1 calculated from the time
series at different lags to measure the significance of
correlations between the present observation and the past
observations, and to determine how far back in time (i.e., of
how many time-lags) are they correlated.
The formula for Autocorrelation (ACF) :

ρ̂k = ˆcov(Xt ,Xt−k)
ˆvar(Xt)

=
∑

t=k+1(Xt − X )(Xt−k − X )∑n
t=1(Xt − X )2
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Autocorrelation ACF

Formula above essentially tells us that the autocorrelation
coefficient for some lag k is calculated as the covariance
between the original series and the series removed k lags,
divided by the variance of the original series.
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Autoregressive Models

An autoregressive model of order p (AR(p), p = 1, 2, . . .) is
given by :

Xt =
p∑

j=1
φjXt−j + εt , t ∈ N∗ (1)

= φ0 + φ1Xt−1 + φ2Xt−2 + . . .+ φpXt−p + εt .

Where {εt} are independent, identically distributed, zero mean

random variables.
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Autoregressive Models

The order of an autoregression is the number of immediately
preceding values in the series that are used to predict the
value at the present time.
A pth-order autoregression, written as AR(p), is a multiple
linear regression in which the value of the series at any time t
is a (linear) function of the values at times
t − 1, t − 2, . . . , t − p.
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Autoregressive Models Examples

AR(1) MODELS :
An autoregressive model is when a value from a time series is
regressed on previous values from that same time series.
for example, Xt on Xt−1 :

Xt = φ0 + φ1Xt−1 + εt

Where : εi ∼ N(0, σ2),
cov(εi , εj) = 0 for i 6= j and
cov(εi ,Xj) = 0 ∀i , j
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Autoregressive Models Examples

AR(1) MODELS :

When |φ1| < 1, such a process, AR(1) is stationary.

When |φ1| = 1, we have a random walk.
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Autoregressive Models Properties

Property 1 : The mean of the Xi in a stationary AR(p)
process is :

µ = φ0
1−

∑p
j=1 φj

Property 2 : The variance of the Xi in a stationary AR(1)
process is :

var(Xi ) = σ2

1− φ2
1
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Autoregressive Models Properties

Property 3 : The lag k autocorrelation in a stationary AR(1)
process is :

ρk = φk
1

Property 4 : For any stationary AR(p) process. The
autocovariance at lag k > 0 can be calculated as :

γk = φ1γk−1 + φ2γk−2 + . . .+ φpγk−p

Similarly the autocorrelation at lag k > 0 can be calculated
as :

ρk = φ1ρk−1 + φ2ρk−2 + . . .+ φpρk−p
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Autoregressive Models Application

Example 1 : Simulate a sample of 100 elements from the AR(1)
process

Xt = 5 + 0.4Xt−1 + εt

where εi ∼ N(0, 1) and calculate ACF.
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Autoregressive Models Examples

AR(2) MODELS :
If we want to predict this year Xt using measurements of
global temperature in the previous two years (Xt−1,Xt−2),
then the autoregressive model for doing so would be :

Xt = φ0 + φ1Xt−1 + φ2Xt−2 + εt

This model is a second-order autoregression, written as
AR(2), since the value at time t is predicted from the values
at times t − 1 and t − 2.
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Autoregressive Models Examples

Example 2 : Repeat Example 1 for the AR(2) process.

Xt = 5 + 0.4Xt−1 + 0.1Xt−2 + εt

where εi ∼ N(0, 1), and calculate ACF.
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Moving Average Models

The MA(q) model say :

Xt = µ+
q∑

k=1
θkεt−k + εt

= µ+ θ1εt−1 + . . .+ θqεt−q + εt

Where : {εt} are independent, identically distributed, zero
mean random variables.
εi ∼ N(0, σ2),
cov(εi , εj) = 0 for i 6= j and
cov(εi ,Xj) = 0 ∀i , j
The value of X depends on εt and q past values of ε.
The value of X at time t is a linear function of past errors.
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Autoregressive Models Properties

Property 1 : The mean of an MA(q) process is : µ
Property 2 : The variance of an MA(q) process is :

var(yt) = σ2(1 + θ2
1 + . . .+ θ2

q)
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Autoregressive Models Properties

Property 3 : The autocorrelation function of an MA(1)
process is :

ρ1 = θ1
1 + θ2

1
, ρk = 0 for k > 1

Property 4 : The autocorrelation function of an MA(q)
process is :

ρk =
θk +

∑q−k
j=1 θjθj+k

1 +
∑q

j=1 θ
2
j
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Moving Average Models Examples

MA(1) models :

yt = µ+ θ1εt−1 + εt

Where εt and εt−1 are independent of each other and
E (εt) = 0.
E (yt) = µ and var(yt) = (1 + θ2

1)σ2
ε
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The ARMA Models

We can combine AR and MA models.
ARMA(1,1) is defined as :

Xt = φ0 + φ1Xt−1 + θ1εt−1 + εt .
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The ARMA Models

The mean of the ARMA(1,1) times series is :

E (Xt) = φ0 + φ1E (Xt−1) = φ0 + φ1E (Xt)

When |φ1| < 1, E (Xt) = φ0
1− φ1

Xt will tend to fluctuate around the mean.
Xt is mean-reverting in this case.
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The ARMA Models

The general ARMA(p,q) model is :

Xt = φ0 + Σp
i=1φiXt−i + Σq

i=1θiεt−i + εt

The MA(q) average has the feature that after q lags there
isn’t any correlation between two random variables.
There are correlations at all lags for an AR(p) model.
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The ARIMA Family Models
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General ARIMA(p,d,q) Model

The general ARIMA(p,d,q) model is given by :

∆dXt = φ0 +
p∑

i=1
φiXt−i +

q∑
j=1

θjεt−j + εt ,

where ∆dXt represents differencing applied d times.
ARIMA Components :

φi : Coefficients of the AR terms.
θj : Coefficients of the MA terms.
εt : Error term at time t.
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ARIMA(1,1,1)

An ARIMA(1,1,1) model is defined as :

∆Xt = φ0 + φ1Xt−1 + θ1εt−1 + εt ,

where ∆Xt = Xt − Xt−1 (first differencing).
It combines :

AR(1) : Dependence on the previous value Xt−1.
I(1) : Differencing to achieve stationarity.
MA(1) : Dependence on the previous error εt−1.
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Random Walk with Drift

A Random Walk with Drift is a model where :

Xt = Xt−1 + µ+ εt ,

where :
Xt : Value of the series at time t,
µ : Drift term (constant trend),
εt : Random error (white noise).

Characteristics :
Without drift (µ = 0), it is a simple random walk.
With drift, the series has a systematic upward or downward
trend.
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Example : Random Walk with Drift

Suppose monthly sales data follows :

Xt = Xt−1 + 5 + εt .

Interpretation :
µ = 5 : Sales increase by 5 units per month on average.
εt : Random variations (e.g., market shocks).

This model can be used to forecast future sales while
accounting for the trend and random variations.
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Practical Applications of ARIMA

Forecasting stock prices or market indices.
Predicting monthly sales or revenue.
Analyzing economic indicators (e.g., inflation rates, GDP
growth).

ARIMA models provide a robust framework for time series
forecasting in diverse fields.
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Steps to Build an ARIMA Model
Workflow

1 Visualize the Data : Plot the time series.
2 Stationarize the Series :

Use transformations (e.g., log).
Differencing.

3 Identify Parameters (p, d, q) :
Use ACF and PACF plots.

4 Fit the Model :
Use software packages like Python’s statsmodels or R.

5 Evaluate the Model :
Analyze residuals.
Use performance metrics.

6 Forecast :
Generate predictions.
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ARCH (Autoregressive Conditional
Heteroskedasticity) Model

ARCH Model, introduced by Engle in 1982, models time series
data with volatility clustering.
The ARCH(q) model is defined as :

Xt = σtεt , εt ∼ N (0, 1)
where :
• Xt : Time series value at time t,
• σ2

t : Conditional variance at time t, given by :

σ2
t = α0 +

q∑
i=1

αiX 2
t−i

• α0 : Constant ensuring positive variance,
• αi : ARCH coefficients indicating the influence of past
squared observations,
• q : Order of the ARCH model.

The ARCH model captures conditional heteroskedasticity but may
require a large q for complex volatility patterns.
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The GARCH Model

Generalized Autoregressive Conditional Heteroskedasticity
(GARCH) model, proposed by Bollerslev, extends the ARCH
model by incorporating lagged values of the conditional variance
itself, allowing for more persistent volatility patterns without
requiring a large number of parameters.
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GARCH(p, q) Model
A GARCH model of order (p, q), denoted as GARCH(p, q), is
given by :

Xt = σtεt , εt ∼ N (0, 1)

• Xt : The value of the time series at time t,
• σ2

t : Conditional variance at time t,

σ2
t = α0 +

q∑
i=1

αiX 2
t−i +

p∑
j=1

βjσ
2
t−j

• α0 : Constant term,
• αi : ARCH coefficients,
• βj : GARCH coefficients, where βj ≥ 0,
• p : Order of past conditional variances,
• q : Order of past squared observations,
• εt : Standardized error term.
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Advantages and Limitations

Advantages :
More parsimonious than high-order ARCH models.
Better fit for financial data exhibiting volatility clustering and
persistence.

Limitations :
May not capture asymmetries in volatility.
Negative shocks may have different impacts than positive
shocks.
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Extensions of the GARCH Model

To address limitations of the basic GARCH model, several
extensions have been developed :

EGARCH (Exponential GARCH)
GJR-GARCH Model
IGARCH (Integrated GARCH)
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EGARCH (Exponential GARCH)

The Exponential GARCH (EGARCH) model, proposed by
Nelson in 1991, allows for asymmetric effects of positive and
negative shocks :

log(σ2
t ) = α0 +

q∑
i=1

αi
εt−i
σt−i

+
p∑

j=1
βj log(σ2

t−j)

Log transformation ensures positivity of σ2
t without coefficient

constraints.
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GJR-GARCH Model

The GJR-GARCH model incorporates an indicator variable to
capture asymmetric effects :

σ2
t = α0 +

q∑
i=1

αiX 2
t−i +

p∑
j=1

βjσ
2
t−j +

q∑
i=1

γiX 2
t−i It−i

where It−i = 1 if Xt−i < 0 and 0 otherwise.
Allows negative shocks to have different effects than positive
shocks.
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IGARCH (Integrated GARCH)

The Integrated GARCH (IGARCH) model is a special case
where :
σ2

t = α0 +
q∑

i=1
αiX 2

t−i +
p∑

j=1
βjσ

2
t−j

with
q∑

i=1
αi +

p∑
j=1

βj = 1.

IGARCH exhibits unit root properties in variance, implying
persistence of shocks.
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Progression of GARCH Models

1 ARCH Model : Captures volatility clustering but may require
high order.

2 GARCH Model : Adds lagged variances for a parsimonious
fit.

3 Extensions (EGARCH, GJR-GARCH, IGARCH) : Capture
asymmetries and long memory effects.

GARCH models are essential in financial econometrics for modeling
volatility dynamics in asset returns, interest rates, and other
economic variables.
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THANK YOU FOR YOUR
ATTENTION
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