........
........
........
.......
......
.....

i>|nstaDeep”"

Reinforcement Learning for
Decision-Making Problems

Imen Jendoubi
Al Research Engineer at InstaDeep
i.jendoubi@instadeep.com

e 6 6 o o o o 17/02/2025

Who this course is for %

The main target audience are should have some knowledge in Machine Learning, but interested
to get a practical understanding of the Reinforcement Learning domain. The attendee should be
familiar with Python and the basics of deep learning and machine learning.

X

i>|nstaDeep"“ 2 Lieees

.......

What this course covers %

Introduction to RL and main formal models.

Aspect of practical RL using open-source library gym.
Value based methods

Policy based methods

X

'D InstaDeep™

Course Plan:

Deep Reinforcement Learning

o

An introduction to RL

o

Value-based
methods

|
L]

ML success key
paradigm o, ries of CONCepts
RL and
terminology

'D InstaDeep™

|
L

RL tabular Deep Gy_rlrJl;aa im[[))?ol\\l/e-

taxonomies Q-learning Q-learning library ments

|

Policy-based
methods

1—T—l

Intro Policy-
gradient

methods

®© 000 0 0 0
® o0 060 0 0 0
Yo oo o o0 00
®© 000 0 00
®© 00 000

o o0 00

........
........
........
.......
......
.....

Course #1

What is Reinforcement
- Learning?

Ol

Machine
learning

1 paradigms

-4

A

a

........
........
........
.......

Machine learning paradigms S

Machine learning

Supervised Unsupervised
Learning Learning

Reinforcement

Learning

i} InstaDeep™

| Supervised learning

Data: (X,Y)

e Xisi.i.dsampled data,

e Yislabel
Goal: build a function that maps some
input into some output X-> Y, when
given a set of example pairs.

Classification Regression
\'\ [1 - .
. T+ &
\\ ...’“
o+ -
\\ + . ”
... \\ . /’
C3O) o, 00 ©
oo ° e
o %" e ®

Source: Supervised vs. Unsupervised learning, by Devin Soni, 2018, Towards
Data Science

'D InstaDeep™

®© 000 0 0 0
® o0 060 0 0 0
Yo oo o o0 00
®© 000 0 00
®© 00 000

o o0 00

Applications

Text classification

Image classification and object location
Regression problems

Sentiment analysis

Training a Supervised Learner

Making Predictions Dog Cat
Unknown
ﬁ s . l “m i \ Prediction :-"---- ?dﬁ
H' | SupervisedLearning | —sh| -
y P Agorithm ﬂy
Chicken

Source: Supervised vs. Unsupervised learning in 3 Minutes, by Alan Jeffares, 2018, Towards
Data Science / i |

........
........
........
.......
......

Unsupervised learning THE

Data: X Applications

e Resolves Clustering,

Just data, no labels!
dimensionality reduction, etc.

Goal: Learn some underlying hidden
structure of the data

:.::. :':: d["mumvlud l-oamlno]d .

Algorithm

%

Source: Introduction to Unsupervised Learning (Kmeans clustering), by Sachin, 2021, Medium

'D InstaDeep™

®© 000 0 0 0
® o0 060 0 0 0
Yo oo o o0 00

®© 000 0 00

Reinforcement learning i

Reinforcement Learning o

An autonomous agent learns how to solve (
a task, through trial and error, from
interaction with an environment

4

Learn through trial and error from

Goal: PrOblemS inVO|Vin9 an agent interaction with an environment.
interacting with an environment which

provides numeric reward signals that v States & actions
. . v No data set
reflect how gOOd Its actions were. v ‘Find actions that maximize reward’
v Decision making
v" Learning to play a game, movie
AGENT ENVIRONMENT recommendation system
-State s €S
- Take action a € A
™ /
v \
wr - Getreward 7

-Newstate s’ € S

Source: Reinforcement Learning real-world examples, by Ajitesh
Kumar, 2022, VitaFlux

i> InstaDeep™

........
........
........

Comparison SEESE

Takeaways:

e Supervised Learning is about learning to predict from examples of correct predictions
e Unsupervised learning is about learning hidden patterns within unlabeled data

e Reinforcement learning is about agents learning by themselves how to take good
actions in their environments.

%

i} InstaDeep™

02

A

Success stories of

JL
a

-4

®© 000 0 0 0
® o0 060 0 0 0
Yo oo o o0 00

®© 000 0 00

Success stories of RL: The Tip of the Iceberg! gttt

DTRs proficiency est. adaptive adaptive
diagnosis recommendation traffic signal decision
EHR/EMR education games control control

pricing, trading healthcare| | education | | transportation | | energy | ro.ommendation

portfolio opt. e-commerce, OR

risk mgmt customer mgmt
business
finance management

deep reinforcement learning

Comptiae ens?:meen::n
systems 9 9
art

topics in maths, physics
computer games robotics computer NLP chemistry, music
science vision drawing, animation

Go, poker sim-to-real recognition seq. gen.

Dota, bridge co-robot detection translation
Starcraft control perception dialog, QA,IE,IR

Yuxi Li, Deep Reinforcement Learning, arXiv, 2018

i} InstaDeep™

) @ 0 0 0 O
' o @ 0 0 0 O

Success stories of RL: Games .,

#1 ATA RI Source: Google DeepMind, 2017.

From https://www.youtube.com/watch?v=WXHFgTvfFSw

Source: D. Silver, “Lecture Notes in advanced topics in Machine Learning”, 2020.
From https://www.davidsilver.uk/wp-content/uploads/2020/03/intro_RL .pdf

#2 AlphaGo

Source: AlphaGo Movie, 2017. sl dic

OBSERVATIONS

From https://www.youtube.com/watch?v=8tqg1C8spV_g&t=1s

Tear !

CTENTT) CTEE
CHEE——D D

items Abilities
AEA NEEE
Modi

GERa

#4 Dota2

Source: Nested - Artificial Intelligence, 2020.
From https://nested.ai/2020/10/26/dota-2-with-large-scale-deep-reinforcement-learning/

i> InstaDeep™

https://www.davidsilver.uk/wp-content/uploads/2020/03/intro_RL.pdf
http://www.youtube.com/watch?v=WXHFqTvfFSw
https://nested.ai/2020/10/26/dota-2-with-large-scale-deep-reinforcement-learning/
https://www.youtube.com/watch?v=8tq1C8spV_g&t=1s
https://www.youtube.com/watch?v=8tq1C8spV_g&t=1s
http://www.youtube.com/watch?v=8tq1C8spV_g
https://www.youtube.com/watch?v=WXHFqTvfFSw
https://www.youtube.com/watch?v=WXHFqTvfFSw

Success stories of RL: Biology

Example: Protein Design

'D InstaDeep™

Science News from research organizations

Reinforcement learning: From board games to protein
design

Protein design software developers have adapted an artificial intelligence strat-
egy proven adept at chess and Go

Reinforcement learning: From board games to protein design

®© 000 0 0 0
® o0 060 0 0 0
Yo oo o o0 00
®© 000 0 00
®© 00 000

o o0 00

https://www.sciencedaily.com/releases/2023/04/230420141759.htm

®© 000 0 0 0
® o0 060 0 0 0
Yo oo o o0 00

®© 000 0 00

Success stories of RL: Biology S

Why is protein folding important? O ; A

| think that we shall be able to get a more thorough understanding of the

nature of disease in general by investigating the molecules that make up the
human body, including the abnormal molecules, and that this understanding -
will permit...the problem of disease to be attacked in a more straightforward

A .
manner such that new methods of therapy will be developed. I rOteln
Linus Pauling, 1960 f l] @

Scientists have long been interested in determining the structures of proteins explalned

because a protein’s form is thought to dictate its function. Once a protein's shape is
understood, its role within the cell can be guessed at, and scientists can develop Protein folding explained

drugs that work with the protein’s unique shape. Source: Google DeepMind, 2020.

From https://www.youtube.com/watch?v=KpedmJdrTpY

/

AlphaFold: Using Al for scientific discovery

Source: Deepmind, 2020
From https://www.deepmind.com/blog/alphafold-using-ai-for-scientific-discovery-2020

'D InstaDeep™

https://www.deepmind.com/blog/alphafold-using-ai-for-scientific-discovery-2020
https://www.deepmind.com/blog/alphafold-using-ai-for-scientific-discovery-2020
http://www.youtube.com/watch?v=KpedmJdrTpY
https://www.youtube.com/watch?v=KpedmJdrTpY
https://www.youtube.com/watch?v=KpedmJdrTpY

®© 000 0 0 0
® o0 060 0 0 0
Yo oo o o0 00

®© 000 0 00

Success stories of RL: Autonomous driving i

Self-Driving Cars B

Source: 9 Reinforcement Learning Real-Life Applications, by Pragati Baheti, 2022, V7 Labs

i} InstaDeep™

https://www.v7labs.com/blog/reinforcement-learning-applications#h1

........
........
........
.......

Success stories of RL: Robotics S

Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation

Source: Peter Pastor [Youtube chan I]2018
S: .youtube.co atch?v=

i} InstaDeep™

http://www.youtube.com/watch?v=W4joe3zzglU
https://www.youtube.com/watch?v=W4joe3zzglU

®© 000 0 0 0
® o0 060 0 0 0
Yo oo o o0 00

®© 000 0 00

Success stories of RL: Healthcare S

Cancer

Diabetes

Chronic Diseases ’
Ancmia

— HIV

Dynamic Trestment Example of dynamic treatment regimes (DTRs): To
Regimes ——— Mental illness . .« e
(Eilepsy,Depression, create a DTR, someone must input a set of clinical

Schizophrenia, Substance

—— observations and assessments of a patient. Using
——— Sepsis
Critical Care previous outcomes and patient medical history, the
Anesthesia . . .
learning system will then output a suggestion on
—— Others

(Vensaton.Hepari treatment type, drug dosages, and appointment
ructured Data ical image mi 1 o1
e Koy A DR el g timing for every stage of the patient’s journey.

Diagnosiﬁ detection/localization tracing)

Unstructured Data >
Free text

Resource Scheduling
& Allocation Healthcare resource
schoduling, task allocation

Other General Optimal Process

Domains Control Surgical robot operation,

FES, Communicasion raie
control etc.

Drug Discovery
g 2 de novo design

/

Health Management Physical activities promotion,
Weight management, etc.

Fig. 2. The outline of application domains of RL in healthcare.

Source: Yu, C., Liu, J., Nemati, S., & Yin, G. (2021). Reinforcement learning in
healthcare: A survey. ACM Computing Surveys (CSUR), 55(1), 1-36.

'D InstaDeep™

https://arxiv.org/pdf/1908.08796.pdf

| Success stories of RL: Natural Language Processing

Document (d)

~ -

~ &
Sentence Selection (Latent)

1
1
h 4

Document Summary (d)

-~ I
~ v

"~ Answer Generation (RNN)

1
b

Answer (y)

Figure 1: Hierarchical question answering: the model first
selects relevant sentences that produce a document summary
(J) for the given query (z), and then generates an answer (y)
based on the summary (d) and the query .

Source: Neptune.ai

retrieved from: https://neptune.ai/blog/reinforcement-learning-applications

'D InstaDeep™

®© 000 0 0 0
® o0 060 0 0 0
Yo oo o o0 00
®© 000 0 00
o o0 0 00

In NLP, RL can be used in text summarization,
question answering, and machine translation just to
mention a few.

For more details:Link

https://neptune.ai/blog/reinforcement-learning-applications
https://github.com/adityathakker/awesome-rl-nlp

-
e ® 00

® 6 06 0O
® 6 06 0 0 0
® e 06 0 0 0
) ®© © © 6 0 O
) @ 0 0 0 O
' o 6 0 0 00

| Success stories of RL: Recommendation systems

amazon.com/Reinforcement-Learning-Introduction-Second-Paperback/dp/BOBISWFGV6 G @ e %
T an Reinforcement Learning: An Introduction, Second Edition, Jui I,,,,,,,.,xk I
77 Paperback =
¥ by ASR (Author) Other New from $26.96
3.0 Ak KyYYr ¥ 20 ratings See all formats and editions

bl The “Frequently Bought Together” section on

$67.05 Shipping & Import Fees Deposit to
Tunisia Details ¥

The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active ¢ M ” M
2 Delivery Tuesday, August 29
research areas in artificial intelligence. ’

Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning @ Deliver to Tunisia
whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain

et etament Leaing,Rkor St Acrow oo provie e and siple ot o e Tty | Avalableto shipin 1-2 days Ta rget, an d the “Recommended Readin g ” articles

ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating

Reinforcemént
Learning

coveraae of other topics Add to Cart

A Fo—" . — from news outlets all utilize learning machines to
T & @ m om e generate recommendations. Specifically for news

533 pages English August 10, 2022 7.5x1.21x9.25 979-8845864970 Returns Eligible for Return, Refund or

reading, RL agents can track the types of stories,

(] Add a gift receipt for easy returns

(e) topics, and even author names someone prefers

Development Fundamentals: Start building website...

Wik iy 120

ST e so that the system can queue the next story they

Sell on Amazon

amagonbook lubs think they would enjoy.

early access

See Clubs

Not in a club? Learn more

Total price: $130.07

Add all three to Cart The Theory and Practice

of Enterprise Al: Recip...
$52.90 vprime

@ some of these items ship sooner than the
others.

'D InstaDeep™

-
e ® 00

® 6 06 0O
® 6 06 0 0 0
® e 06 0 0 0
) ®© © © 6 0 O
) @ 0 0 0 O
' o 6 0 0 00

| Success stories of RL: Energy Conservation

@Google DeepMind Research Blog Impact Safety & Ethics About Careers —

Grid

Smart meter

e —

Ct':c Applied

DeepMind Al Reduces Google
ata Centre Cooling Bill by 40%,

.

Water heater

July 20, 2016

Electrical vehicle

Battery

RL-based Home energy management systems

From smartphone assistants to image recognition and translation, machine learning

already helps us in our everyday lives. But it can also help us to tackle some of the
world’s most challenging physical problems - such as energy consumption. Large-
scale commercial and industrial systems like data centres consume a lot of energy,
and while much has been done to stem the growth of energy use, there remains a

lot more to do given the world's increasing need for computing power.

Reducing energy usage has been a major focus for us over the past 10 years: we

N ™
InstaDeep

https://www.deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-by-40
https://www.semanticscholar.org/paper/Residential-Energy-Management-with-Deep-Learning-Wan-Li/ce02b13f80c14c7a2116f83171415c7751a043ee

Success stories of RL: Traffic Light Control

@ a Remote cloud server

e o
[N]
ye

[]

The Continuous traffic monitoring
in complex urban networks helps
build a literal and figurative “map”
of traffic patterns and vehicle
behavior.

Source: Kim, D., & Jeong, O. (2019). Cooperative traffic signal control with traffic flow
prediction in multi-intersection. Sensors, 20(1), 137.

'D InstaDeep™

........
........
........
.......

| Success stories of RL: Marketing and advertising SRS

HOW Al CAN IMPROVE YOUR MARKETING ACTIVITIES

For example,
marketing and
02 O& 06 advertising

CREATE MORE CREATE MORE RN platforms can use

RELEVANT EFFECTIVE ADVERTISING
AND ENGAGING CAMPAIGNS CHANNELS R|_ to associate

CONTENT L. .
similar companies,
products, and
services to

: @) @ : @) prioritize for
01 | 03 | 05 | 075 certain customers.

GENERATE A LIST TARGET OPTIMIZE ANALYZE DATA
OF SEO-FOCUSED A BROADER PERFORMANCE ON CONSUMER
KEYWORDS AUDIENCE BASED ON DATA BEHAVIOR

/v

Source

i) InstaDeep™

https://dlabs.ai/blog/5-ways-machine-learning-can-transform-your-digital-marketing/

O3

A

Key concepts and

Jerminology

-4

®© 000 0 0 0
® o0 060 0 0 0
Yo oo o o0 00

®© 000 0 00

Reinforcement Learning S

Reinforcement Learning is the study of agents and how they learn to perform complex tasks by trial
and error. It formalizes the idea that rewarding or punishing an agent for its behavior makes it more
likely to repeat or forego that behavior in the future.

Source: Simple Beginner’s guide to Reinforcement Learning & its implementation, by
JalFaizy Shaikh, 2017, Analytics Vidhya

Source: TDM: From Model-Free to Model-Based Deep Reinforcement Learning, by
Vitchyr Pong, 2018, Berkeley Artificial Intelligence Research

'D InstaDeep™

https://people.eecs.berkeley.edu/~vitchyr/
https://www.analyticsvidhya.com/blog/author/jalfaizy/

........
........
........
.......

Deep Reinforcement Learning S

Artificial Intelligence

Deep Reinforcement
Learning

Source: Kim, D., & Jeong, O. (2019). Cooperative traffic signal control with traffic flow prediction in
multi-intersection. Sensors, 20(1), 137.

i> InstaDeep™

........
........
........
.......

RL framework ST

AGENT ENVIRONMENT
-State S €S

- Take action a € A

P "

W - Getreward 7
-New state s’ € S

Source: Reinforcement Learning Real-world examples, by Ajitesh Kumar, 2022, Analytics Yogi.

i> InstaDeep™

RL framework: example#1

Goal: reach the diamond block (S4)

State: the position of the agent (s
or s2, or s3, etc.)

Action: move up, down, right, left
Reward: (+1) reward if it reaches the

diamond block and (-1) reward if it
reaches the fire pit.

'D InstaDeep™

sl

s5

;B
.
53.0
, > o

P
b
o~

wn

O
h;
(=

s10

s11

Source: Reinforcement Learning Tutorial, Javatpoint

........
........
........
.......
......
.....

®© 000 0 0 0
® o0 060 0 0 0
Yo oo o o0 00

®© 000 0 00

RL framework: example#2 S

Goal: pick objects with different
shapes

State: Raw pixels from camera

Action: move arm, grasp

Reward: positive (+1) when pickup is
Target Target
successful Object Selected

/

Source: Introduction to Deep Reinforcement Learning (Deep RL) by Lex
Fridman, 2019, MIT Deep Learning 6.S191

'D InstaDeep™

........
........
........

.......

Markov decision process LSt
An RL problem is typically formulated as a Markov Decision Process (MDP)

A (finite) MDP consists in a tuple (S, A, P, R, y) where:

e Sisa (finite) set of states

e Ais a (finite) set of possible actions

e P:SxAxS->][0,1], Pis the transition probability distrioution modeling the system
dynamics: P(s, a, s')=P(st+1=s’ | st=s, at=a)

e R:SxAxS->|R (set of real numbers) is the reward function

e 7. the discount factor

%

i} InstaDeep™

........
........
........
.......

Markov decision process KLt

Markov Property:

- the future is independent of the past given the present

A stats S is Markov if and only if: :| Agent

state reward action
S, R, A,

P[St+1 | S =P[Sw1 | S1,, S Ruiff
< Environment]47

e Once the current state is known, the history of information

encountered so far may be thrown away, and that state is a
sufficient statistic that gives us the same characterization of
the future as if we have all the history.

%

i} InstaDeep™

........
........
........

Markov decision process THE

In a typical RL problem, at time t, an agent interacts with the
environment and takes an action a, when the environment is in

state s.. Consequently, the environment moves to a new state :[:
Agent

s, and the agent receives a rewardr,_, that expresses how
good its action was.
state reward action
St Rr A’
Rt+1 a
Note that the Markov Property implies that our agent needs S Environment]47

only the current state to decide what action to take and not the
history of all the states and actions they took before.

The goal of the MDP is to find a policy, often denoted as m, that
yields the optimal long-term reward.

/

i} InstaDeep™

........
........
........
.......

Markov decision process KLt

Markov Property:

e Could the blackjack card game verify the Markov Property?

g, A

Blatkea)ack

Source: Mobile Premier league, 2022

i> InstaDeep™

........
........
........
.......

Markov decision process KLt

Markov Property:

e Could the blackjack card game verify the Markov Property?

Blatkea)ack

Source: Mobile Premier league, 2022

e The game can be played successfully just by knowing our current state
(what cards we have in hand and the opponent’s one face-up card)

i> InstaDeep™

MDP: Quiz!

Q1 Which of the following control problem or
decision task could have a Markov property?

Driving a car (1)

Decide whether to Invest in a stock or not (2)

Choose a medical treatment for a patient (3)

Diagnose a patient’s illness (4)

i> InstaDeep™

........
........
........
.......
......

States and observation S

A state s describes the environment completely to the agent. Nothing is hidden in the state.
e e.g: arobot might have states like joint angles, velocity, position as the states defining it.

An observation o is a partial description of a state, which may omit information.

e Complete Observation: when the agent is able to observe the complete state information
that defines the status of the environment/ world after the agent has acted out a certain
action, in it.

o e.g: chess can be represented completely by the positions of all the pieces on the
board.

e Partial Observation: when the agent is able to observe only partial information regarding

the state of the environment. /
o e.g: poker since a player cannot observe other players’ cards

i} InstaDeep™

........
........
........
.......

States and observation S

A state be represented as:
e Scalar (rank-0 tensor): temperature
e Vector (rank-1tensor): [position, velocity, angle, angular velocity]
e Matrix (rank-2 tensor): grayscale pixels from an Atari game
e Data cube (rank-3 tensor): RGB color pixels from an Atari game

State preprocessing:
e Cleanup
e Numerical representation

e Standardization: so that each feature has a similar range and mean
[

i} InstaDeep™

[]
(]
\J

Actions

Actions are the things that the agent can perform in order to influence the environment.
Different environments allow different kinds of actions. We distinguish:

e Discrete actions mean that the agent has a finite action space to take the action from.
Example: In a maze, the agent can go up, down, left or right..

e Continuous actions have some value attached to the action. The agent has an infinite
action space. Example: For a robotic arm, actions involve controlling the angles or positions
of its joints, which exist in a continuous space.

e Hybrid actions: mix of both. Example: for a robot learning to navigate and pick up objects,
actions include discrete movements (forward, backward, turn) and continuous actions for
grasping objects (adjust gripper position or force)

The set of all valid actions in a given environment is called the action space. /

i> InstaDeep™

........
........
........

.......

Reward S
A reward is a scalar feedback signal that indicates how well the agent is doing at a given step.
rt+1= R (st’ at’ st+1)

whereR (s, a,, s, ,) denotes the the reward received for being in a state s,, taking an action a,
and ending up in a state s ,.

The reward is frequently simplified to just a dependence on the current stater, .=R(s,) or
state-action pairr, =R (s, a)

The agent’s sole objective is to maximize the total reward it receives over the long run. The

reward should therefore be designed in a way that incentivizes the desired /
behavior.

i} InstaDeep™

®© 000 0 0 0
® o0 060 0 0 0
Yo oo o o0 00

®© 000 0 00

Reward BT

A reward signal can be dense or sparse:

e A sparse reward is one which produces a neutral reward signal (usually r = O) for most of
the time steps, and a positive and negative reward only when the environment terminates.

e A dense reward is the opposite: it provides a lot of nonneutral reward signals indicating
whether the last action was good or bad, so that in most time steps an agent will receive a
positive or negative reward.

e Sparse reward are usually more challenging than dense rewards

Sparse Rewards Dense Rewards
4 +1k -4 +1k
3 3| +3
2 2| +2 | +3
1 1L]|+1 |2 | #3
0| I 0| T |+1 |+2' | 33

i} InstaDeep™

........
........
........

.......

Example of MDP Formulation S

e A mobile robot has the job of collecting empty soda cans

e [t runs on arechargeable battery

\ \

e Robot decisions are based on the energy level: high or low 3
e In each state, the agent can decide to (1) search for a can for

a certain period of time (2) remain stationary and wait for

someone to bring it a can (3) recharge battery

© Google Researgh
Source: Google Research, 2023

e Rewardis

o Generally equal to the number of collected cans
o 0inrecharge mode

o negative if runs out of power while searching (very bad as /
agent needs to be rescued)
i>|nstaDeep"“

\

®© 000 0 0 0
® o0 060 0 0 0
Yo oo o o0 00

®© 000 0 00

Example of MDP Formulation S

17 Twait j '3 =9 3 T'search

&, T'search i — ¥, T'search 1, Twait

© Google Researgh

Source: Reinforcement Learning-An Introduction, a book by Richard Sutton Source: Google Research, 2023

e State Space?

e Set of possible actions ? A(low) and A(high) /
e Reward?
e Transition probabilities?

i>|nstaDeep"“

https://en.wikipedia.org/wiki/Richard_S._Sutton

Example of MDP Formulation: State

L, Tvase 1—R_3 B;Tsearch

&, T'search i — ¥, T'search la Twait

Source: Reinforcement Learning-An Introduction, a book by Richard Sutton

e State Space={high, low}

'D InstaDeep™

®© 000 0 0 0
® o0 060 0 0 0
Yo oo o o0 00
®© 000 0 00
®© 00 000

o o0 00

© Google Research

Source: Google Research, 2023

a

https://en.wikipedia.org/wiki/Richard_S._Sutton

........
........
........

Example of MDP Formulation: Action S

17 Twait j '3 =9 3 T'search

&, T'search i — ¥, T'search 1, Twait

© Google Researgh

Source: Reinforcement Learning-An Introduction, a book by Richard Sutton Source: Google Research, 2023

e Set of possible actions ?
o A(low)={search, recharge, wait}

o A(high)={search, wait} 7
'D InstaDeep™

https://en.wikipedia.org/wiki/Richard_S._Sutton

®© 000 0 0 0
® o0 060 0 0 0
Yo oo o o0 00

®© 000 0 00

Example of MDP Formulation: Transition Probability REEES

17 Tuait j '3 =9 3 T'search

search

&, T'search 1 — @, T'search 1, Tuait ® Google Researgh
Source: Google Research, 2023

Source: Reinforcement Learning-An Introduction, a book by Richard Sutton

e Transition probabilities? s a s’ p(s'|s, a)
high search high 6!
high search low 1l — o
low search high | 1 -7
low search low B
high wait high il
high wait low 0
low wait high | O
low wait low 1
low recharge high | 1
low recharge low 0

'D InstaDeep™

https://en.wikipedia.org/wiki/Richard_S._Sutton

Example of MDP Formulation: Reward

1 s Twait

1_,‘6’ -3

search

search

,3 : T'search

&, T'search 1 — Y, T'search 1, Twait
Source: Reinforcement Learning-An Introduction, a book by Richard Sutton
e Reward? s a s’ r(s,a,s’)

high search high | Tgearch
high search low Tsearch
low search high -3
low search low Tsearch
high wait high | 7Tyait
high wait low -
low wait high -
low wait low Twait
low recharge high
low recharge low -

'D InstaDeep™

®© 000 0 0 0
® o0 060 0 0 0
Yo oo o o0 00
®© 000 0 00
®© 00 000

o o0 00

® Google Researgh
Source: Google Research, 2023

Yy

https://en.wikipedia.org/wiki/Richard_S._Sutton

........
........
........
.......

Episodic and continuing tasks S
We refer to a complete sequence of interaction, from start to finish, as an

episode.

SI)A1!R2?523A27""ST

Episodes are also called Trajectories or rollouts.

Episodic tasks come to an end whenever the agent reaches a terminal state.
e.g: super mario

Continuing tasks are tasks that continue forever (no terminal state). e.g:
stock trading

'D InstaDeep™

®© 000 0 0 0
® o0 060 0 0 0
Yo oo o o0 00

® o000 0 0

Episodic and continuing tasks SIS

Episodic tasks have a starting point Continuing tasks continue forever (no
and an ending points (a terminal state) terminal state)

Source: jeuxvideo.com, 2023

Source: droitdunet.fr, 2023

i> InstaDeep™

Example of MDP Formulation:

1 s Twait

&, T'search

1_,‘6’ -3

search

search

1—a, Tsearch

,3 : T'search

1, Tyase

Source: Reinforcement Learning-An Introduction, a book by Richard Sutton

Reward?

'D InstaDeep™

= 2reln alr(s,a,s)

Reward

® Google Researgh
Source: Google Research, 2023

s a s’ r(s,a,s’)
high search high | Tgearch
high search low Tsearch
low search high

low search low Tsearch
high wait high Twalt
high wait low

low wait high

low wait low Twalt
low recharge high

low recharge low

®© 000 0 0 0
® o0 060 0 0 0
Yo oo o o0 00
®© 000 0 00
®© 00 000

o o0 00

Y

https://en.wikipedia.org/wiki/Richard_S._Sutton

........
........
........

Return Rt

The return Gt is the total discounted reward from time-step t.

Gt = Riy1 +YRiy2 + YV’ Riyz +-- = ZWth+k+1a
k=0

The discount y € [0, 1] characterizes the “foresightedness” of the agent:

e When this discount rate is close to zero, the agent will care more about the immediate
reward.

e Whenitis close to 1, the agent will care more about the long term reward.

e Most of the time, is set to something between 0.9 and 0.99:
o Inthis case, we look into future rewards, but not too far

%

i} InstaDeep™

........
........
........
.......

Policy RIEEE
Policy network
e A policy is the “brain” of tha agent: It is the function that tells us what
action to take given the state we are in. It maps states into action in order

to enable the agent of maximum reward.

p,, (@ls)

L
by
§

e We often denote the parameters of such a policy by 6.

o Deterministic policy: is a mapping 1. S -> A.
m At a given state, the policy will always return the same action

o Stochastic policy: is a mapping
m T:SXA->[01]
Ti(als) = P(At=al St = s)
m The policy outputs a probability distribution over actions

%

i} InstaDeep™

Policy: Quiz!
» Q1 Consider a deterministic policy . S -> A
where: (low) = search , i(high) = search

Which of the following statements are true, if
the agent follows the policy?

If the state is low, the agent chooses action search

If the action is low, the agent chooses state search.

The agent will always search for cans at every time
step.

If the state is high, the agent chooses to wait for
cans.

i> InstaDeep™

Policy: Quiz!
« Q2. Consider a different stochastic policy
= S xA->[01] where: n(recharge | low)=0.3, m(wait | low)=0.5,
m(search |low)=0.2, i{search | high)=0.6 T(wait | high)=0.4

Which of the following statements are true, if the agent
follows the policy?

2020 Analytics Vidhyal

If the battery levelis low, the agent will always decide to wait for
cans.

If the battery level is high, the agent chooses to search for a can
with 60% probability, otherwise waits for a can.

If the battery level is low, the agent is most likely to decide to wait
for cans.

i> InstaDeep™

®© 000 0 0 0
® o0 060 0 0 0
Yo oo o o0 00

® o000 0 0

Gridworld example S

Environment: The world is primarily composed of nine patches of grass. But
two out of the nine locations have large mountains.

States: We will think of each of the nine possible locations in the world as states
of the environment.

Actions: At each point in time the agent can only move up, down, left or right
and can only take actions that lead it to not get off the grid.
The arrows show the possible movements that we are allowed to take. A

Goal of the agent: is to get to the bottom right hand corner of the grid as
quickly as possible.

Episode ending condition: the episode finishes when the agent reaches the
goal.

AL

Reward: the agent receives a reward of:
_ _1 for mOSt tranSitiOnS Source: Deep Reinforcement learning nanodegree program, Udacity 2022
- If an action leads the agent to encounter a mountain it receives -3.
- And if it reaches the goal state it gets a reward of 5 and the episode ends.

i>|nstaDeep"" 55

........
........
........
.......

Gridworld example KLt

A

"

Source: Deep Reinforcement learning nanodegree program, Udacity 2022

i>|nstaDeep"" 56

Gridworld example

........
........
........
.......

Gridworld example KLt

i> InstaDeep™

........
........
........
.......

Gridworld example KLt

For each state, the state-value function yields
the expected return, if the agent started in
that state, and then followed the policy for all
time steps.

Source: Deep Reinforcement learning nanodegree program, Udacity 2022

i> InstaDeep™

........
........
........
.......

Value functions S

Value network

vy ()
The value function is the sum of the rewards the agent is expected to <
accumulate starting from the current state given a policy 1t. It evaluates the
quality of the states. The state that will be chosen by the agent will be the
state with the maximum value function. It is presented by the following

e ion:
quation =
>
St—S] 3
sl

For each state s /
It yields the expected return //
if the agent starts in state s
and then uses the policy
> InstaDeep™

Ur(8) = EAGy | Sy=35] = [Z’Y Rtk

T k=0

Value function: Quiz!

« Q1 Which of the following statements are
correct:

The value of a state may differ depending on the policy that
IS being followed by the agent

The value of a state depends on the initial state only
regardless of the policy being followed

Given a policy, the value function maps the states to the
expected returns

If =1, the the value function maps the states to the
expected immediate reward

i> InstaDeep™

Value function: Quiz!

« Q1 Which of the following statements are
correct:

The value of a state may differ depending on the policy that
IS being followed by the agent

The value of a state depends on the initial state only
regardless of the policy being followed

Given a policy, the value function maps the states to the
expected returns

If =1, the the value function maps the states to the
expected immediate reward

i> InstaDeep™

........
........
........

Value functions i

An important observation is that the value of a state is not dependent on the immediate rewards
only, but it considers the long term rewards (optionally discounted)

If you have the false impression that we should always take the action with the highest immediate
rewards, then have a look at the following example:

Following the states with
maximum immediate
reward could lead to a trap!

i} InstaDeep™

Yoo oe

Gridworld example

(-1)+(-1)+(-1)+(-3)+(-1)+(-1)+(-3)+5 = -6
(-1)+(-21)+(-3)+(-1)+(-1)+(-3)+5 =-5
(-1)+(-3)+(-1)+(-1)+(-3)+5 =-4
(-3)+(-1)+(-1)+(-3)+5=-3
(-1)+(-1)+(-3)+5=0

(-1)+(-3)+5=1

(-3)+5 =2

5=5

%

Source: Deep Reinforcement learning nanodegree program, Udacity 2022

i> InstaDeep™

Gridworld example

Source: Deep Reinforcement learning nanodegree program, Udacity 2022

i> InstaDeep™

........
........
........

V(st) = (-1)+(-3)+5 = (-1) +V(st+1) = (-1) +(2) =1

= The value of any state can be expressed as the sum of
the immediate reward and the discounted value of the
state that follows.

(Suppose no discount y =1) /

........
........
........
.......

Bellman expectation equation S

Value network

All bellman equations attest the fact that value functions satisfy recursive
relationships.

The state value function can be decomposed into immediate reward plus
discounted value of successor state.

v (s)

’Un(S) = IEn[RI:u T 7vn(5tr1)|st — 8]

The value of any state =

L
.
L]
‘s,
the immediate reward + the discounted /
value of state that follows following the policy

'D InstaDeep™

Value function: Quiz!
= Q1 The policy given by: 1i(s1) = right , Ti(s2) =
right, 1(s3) = down, i(s4) = up, T(s5) = right,

T(s6) = down, T(s7) = right, T(s8) = right
Assume y =1. What is v(s1)?

-1
O

1

2

i> InstaDeep™

Value function: Quiz!
= Q1 The policy given by: 1i(s1) = right , Ti(s2) =
right, 1(s3) = down, i(s4) = up, T(s5) = right,

T(s6) = down, T(s7) = right, T(s8) = right
Assume y =1. What is v(s4)?

-1
O

1

2

i> InstaDeep™

Value function: Quiz!
= Q3 Select the statements that are true:

V(SB) = -1 + v(Sk)
V(S7) = -3 + v(s8)

v(s1) = -1 + v(s2)

Vv(s4) = -3 + v(s7)

V(s8) = -3 + v(shk)

i> InstaDeep™

| What's being optimal

e Whenis aRL problem solved?
o When we find a policy 1t that achieves a lot of reward
over the long run — it's not about maximizing the
immediate rewards

e What can help us in solving this optimality problem is the
findings of the mathematician Bellman and, in particular, it’s
his famous Bellman equation. We'll see this in more details
later on.

e As we are looking for the optimal policy for making decisions,
we need a criteria that allows us to order policies or give a
rank for each one.

o Value functions define a partial ordering over policies

'D InstaDeep™

®© 000 0 0 0
- © 0 0000 00
Yo oo o o0 00
®© 000 0 00
®© 00 000

o o0 00

Source: Wikipedia, 2023

Richard Ernest Bellman
(August 26, 1920 — March 19, 1984)

"In the first place I was interested
in planning, in decision making, in
thinking. But planning is not a good
word for various reasons. I decided
therefore to use the word,
"programming.” I wanted to get
across the idea that this was
dynamic, this was multistage, this
was time-varying-"

70/‘

........
........
........
.......

What's being optimal S

A policy 1t is defined to be better than or equal to another policy 1 if its expected
return is greater than or equal to that of the other policy 1t for all states.

More formally,

m > m if and only if v (s) 2v (s)foralls €S

Source: Deep Reinforcement learning nanodegree program, Udacity 2022

i> InstaDeep™

........
........
........
.......

What's being optimal S
Note: It is often possible to find two policies that cannot be compared.

There may be more than one optimal policy, we denote the optimal policies by t*
It is guaranteed to exist but may not be unique = It’s the solution to the MDP.

They share the same state-value function, denoted v*:

v (8) = mngﬂ(s)a for all s € 8.

%

i} InstaDeep™

Ordering Policies: Quiz!

= Q1 Select the statements that are true
(assume ¥=1):

a1l >= 2 and &3 >= a2

a2 >= 1l and m2 >= a3 e

a1l >= a3 and zx3 >= x4

n1: agent always goes right

T4 >= 72 m2: agent always goes down

a2 >= a4 n3: agent goes right with a probability of 0.5 and
down with a probability of 0.5

n4: agent goes right in 10% of cases and in 90% of
cases executes the “‘down’ action

i> InstaDeep™

........
........
........

.......

Action-Value functions S

The action-value function of a state s and action a under a policy T,
denoted by g _(s,a), is the expected return when starting in the state,
taking the action and following the policy thereafter.

@ (s,a) = Ef[G; | Si=s,A; = a] = Eq [Z 7th+k+1 Si=s,At=a] .
k=0

"

For each state s apd action\a
it yields the expected return

if the agent starts in state s

and takes action a

and then uses the policy to choose its actions for

%

all time steps
i} InstaDeep™

........
........
........
.......

Action-Value functions S

i>|nstaDeep"" 75

Action-Value functions

'D InstaDeep™

........
........
........
.......
......
.....

........
........
........
.......

What is being Optimal S

By interacting with the environment the agent estimates the optimal action-value function

Source: Deep Reinforcement learning nanodegree program, Udacity 2022

We obtain g*

From that estimation, it can quickly obtain an optimal policy Tt*. For each
state, we pick the action that yields the highest expected return.

i} InstaDeep™

........
........
........
.......

What is being Optimal S

Optimal policies also share the same optimal action-value function, denoted q,

q.(s,a) = maxgq,(s,a), for all s € § and a € A(s).

i> InstaDeep™

04

-

-4

A

Taxonomy of RL algos

a

........
........
........
.......

Taxonomy of RL algorithms LT
All the methods in RL can be classified into various aspects:
e Model-free or model-based

e Value-based or policy-based
e On-policy or off-policy

i>|nstaDeep"" 30

........
........
........
.......

Model-free and Model-based RL S

Model: A model predicts what the environment will do next. The term model refers to
the transition function and the reward function

e Transitions: P predicts the next state (i.e., system dynamics)
P(s, a, s))=I|P(s,,,=s"| s,=s, a,=a)

e Rewards: R predicts the next immediate reward (e.g., r_, = [ER_, | s =s, a =a))

Model-based: The agent either has the model or tries to build an explicit
representation of the environment based on its interactions with the environment

Model-free: The agent does not build a model of the environment. Instead, the agent
uses the interactions with the environment to find out a policy and/or value function.

i>|nstaDeep"“ 31

........
........
........

.......

Value-Based and Policy-Based learning S

e Policy-based
o policy
o No value function

e Value-based
o No policy (implicit)
o A value function

e Actor critic

o policy
o value function

i}lnstaDeep’” 82

® 0000 0 00
® 0000 0 00
Yoo o o0 0 0 0

®© 000 0 00

Value-Based and Policy-Based learning SEES

os)/Qlsa) (el

Value-Based Learning Policy-Based Learning
The agent optimize the value function, The agent optimizes its policy right
that it uses to select the action to take away without passing through a value

at each step, e.g. the action with the function. The agent takes the action
highest value estimate with the highest probability.

> > >4
T J
T v > B

i>|nstaDeep“‘ 83

On-Policy and Off-Policy

This affects how training iterations make use of data.

e On-Policy: it learns on the policy—that is, training can only utilize data
generated from the current policy 1t. This implies that as training iterates through
versions of policies, Tt 1,12, 1 3,..., each training iteration only uses the current
policy at that time to generate training data. As a result, all the data must be
discarded after training, since it becomes unusable.

e Off-Policy: Any data collected can be reused in training.

i>|nstaDeep"“ 34

........
........
........
.......
......
.....

®© 000 0 0 0
® o0 060 0 0 0
Yo o000 00

®© 000 0 00

| Taxonomy of RL algorithms S

L RL Algorithms |

|
{ R
L Model-Free RL } { Model-Based RL J
) L
1 ¥
¢ ¥ ¢)
Policy Optimization L Q-Learning 1 L Learn the Model 1 (Given the Model 1
') V3 N\ ' N\
Policy Gradient < 5 N DQN > World Models —{ AlphaZero J
. » CCECI » . » 1
A2C / A3C = ‘ N > C51 > I2A
. > TD3 < - e
PPO < \ QR-DQN > MBMF
i > SAC < " - i
TRPO < HER > MBVE

i}lnstaDeep’” 85

........
........
........
.......
......
.....

Course #2

Value Based methods
—

®© 000 0 0 0
® o0 060 0 0 0
Yo oo o o0 00

®© 000 0 00

Value-Based learning LSt

Recall that value-based methods: Train a value function to learn which state is more valuable and
use this value function to take the action that leads to it.

How can the agent consolidate his experience to learn this value function?
- The agent interacts with the environment and collects trajectories. The accumulated
experience can be used to learn the value function.

The agent needs more episodes to collect better informed decisions and truly understand the
environment.

e The agent hasn't attempted each action from each state.

e The environment dynamics are stochastic.

Episode 1 = = 3 L
Score: f m %-: & m %‘: = E 1 +10 l\!(

+7 S a r S a ro S9 ag T S a ry 84
0 0 1 1 1 2 2 3 3 3

/

Episode 2

o] i EANtEEtDE>DE T W%

+6 S0 a ™ S1 a T2 S22 G T3 83 a3 T4 S4 G4 T5 Sp

N ™
D I nsta D ee p Source: Deep Reinforcement learning nanodegree program, Udacity 2022

Ol

-

-4

A

Tabular Q-learning

a

........
........
........
.......

Q-learning: Big picture S

Q-Learning is an off-policy value-based method that uses Bellman equation as a
basis to train its action-value function.

Q-Learning is the algorithm we use to train our Q-function, an action-value function
that determines the value of being at a particular state and taking a specific action at
that state.

Q-function is encoded by a Q-table, a table where each cell corresponds to a
state-action pair value

Q-Function

8
D | nsta D ee p"" Source: Deep Reinforcement learning nanodegree program, Udacity 2022

........
........
........
.......

Q-learning: The link between values and policy SRt

Question: How can we find the optimal policy once we have this Q-table (or the value
of each state-action pair)?

Note that whenever the value of each state-action pair is known, the optimal action can be
determined from the following equation:

7 (s) = arg max Q" (s, a)

In other words, if we have an optimal Q-function, we have an optimal policy since we know

the best action to take at each state. %

i} InstaDeep™

........
........
........

.......

Q-learning: estimating Q values S

Question: How can we fill in this Q-table so that it includes the values of each
state-action pair?
We want to find the Q values without the need for prior knowledge of environment dynamics

(model-free RL), and, instead, leverage our interactions with the environment for determining
the value of each state-action pair.

If, for every action, the reward and the next state can be observed, one trick is to use the
following update rule which is based on Bellman equation:

Q(S;, A;) < Rip1 +ymaz,Q(Sii1,a)

Discounted Estimate
optimal Q-value
of next state

For each interaction with the environment, we update the Q value based on
the equation above. Then, after a large number of interactions with the /
[> InstaDeep™ environment, the action values Q will converge to the true Q values. 91 é

Q-learning: The Exploration-exploitation tradeoff

Before giving an example on how to use Q-learning, note that In the beginning, our Q-table
is useless since it gives arbitrary values for each state-action pair (most of the time, we
initialize the Q-table to 0). The agent must therefore continually explore its environment by
attempting different states and actions and observing its obtained reward.

By only exploring his environment, the agent risks to end in the bad state. At some point, the
agent needs to start taking advantage of what it has learned so far. As the agent explores the
environment and we update the Q-table, it will give us a better and better approximation to
the optimal policy. This is one of challenges of RL: finding the right balance between
exploration and exploitation.

i>|nstaDeep"“ 92

........
........
........
.......
......
.....

NN

| Q-learning: The Exploration-exploitation tradeoff

i) InstaDeep™

Exploitation
use known information to
maximize reward

& O

Exploration
Try different random actions in
order to discover more
information about the
environment

& O

93

........
........
........
.......
......
.....

........
........
........

.......

Q-learning: The Exploration-exploitation tradeoff RS

At each step, the agent has two choices. He should either act greedily (take the best
action based on the known information), or to try to find more information about the

environment in order to improve his knowledge and to discover a way to obtain better
rewards in the future.

a3
D InstaDee pm Source: Hugging Face Deep RL Course 2018

........
........
........
.......
......

Epsilon greedy policy S

Exploration can be achieved using an epsilon-greedy policy. This policy consists of
choosing the action among the possible ones with the highest Q value with 1-¢
probability, or to explore the environment by choosing it randomly with e.

0 € il
.

— It's common to start with a high e and to reduce its value as your policy goes through

more iterations.

Epsilon

\\ 4

i}lnstaDeep”‘ Training

........
........
........
.......

Q-learning Example S

e Thereward is non-zero in two cases:

Transition to the Goal (G) state has a +100 __Q __1QQ
reward, while moving into the Hole (H) state Start @\ G
has a -100 reward. These two states are | O ? “—— 0 ?
terminal states and constitute the end of l | 0 l |
one episode from 0 B | R

e The agent assumes a policy that selects a 9——

ra ndom aCtion 90% Of the time a nd eXp|OItS |§3g|r|(;?1|r%ull_ltldA Kapoor, A., & Pal, S. (2019). Deep learning with TensorFlow 2 and Keras,. Packt
the Q-table 10% of the time.

. Y=09

N

i>|nstaDeep"“ 96

Q-learning Example

Source: Gulli, A., Kapoor, A., & Pal, S. (2019). Deep learning with

We initialize the Q-table

Since the agent has not
learned anything yet about its
environment, the Q-table has
zero initial values.

D InstaDeep™

TensorFlow 2 and Keras,. Packt Publishing Ltd.

0,00 | (0,1) | &
(0,2)
1.0 | 1.1 | @H
(1,2)

Environment

........
........
........
.......
......
.....

Acton
A N Ead
(0,0) 0 0
(0,1) 0 0
02) 0 0
(1,0) 0 0
(1,1) 0 0
(1,2) 0 0
Q Tab

Q-learning Example

EPISODE#1:

Suppose: action#1 is
randomly selected and
indicates a move to the right

i) InstaDeep™

Source: Gulli, A., Kapoor, A., & Pal, S. (2019). Deep learning with

TensorFlow 2 and Keras,. Packt Publishing Ltd.

(0.0)

(1,0)

(L"n

........

. .\

(0. 2)

Mode: Exploration

Q((0,0),—) = reward + y * max_ Q((0,1), a')

Q((0,0),~+)=0+0.9*max(0,0,0,0)=0

Acbonl
",) 1
(0,0) 0. 0

| Q-learning Example S

® 0000 0 00
........
Yoo o o0 0 0 0

®© 000 0 00

. Source: Gulli, A., Kapoor, A., & Pal, S. (2019). Deep learning with
E P I SO D E#1 ° TensorFlow 2 and Keras,. Packt Publishing Ltd.

Suppose: action#2 is
randomly selected and
indicates a move in
downward direction

i) InstaDeep™

i Actaonl l T
2\ > -
start | Y SG o
(0,0) ©. 1) 0.2) (0,0) 0 0 0 0
‘H on| 0. 0 | o | o
(1,0) (1.2) /,."'(6.2) 0 0 0 0
Mode: Exploration
(1,0)
; m—— -
Q((0,1),]) = reward + y * max_ Q((1,1), a")

Q((0,1),l)=0+0.9*max(0,0,0,0)=0

| Q-learning Example

EPISODE#1: TonsorFlow 3 and Keras,. Packt Publishing Lid. -+
Suppose: action#3 is randomly i Acton]
selected and indicates a move to Start 0) G State ! l
the right (0,0) o.n | 00| o 0 0 0
'
It encountered the H state and 0 on | 0 0 0 0
received a -100 reward. The episode (1,0) (1.1 0:2) 0 0 0 0
has just finished, and the agent Mode: Exploration
returns to the Start state. (1,0) 0 0 0 0
____________ JR——
----------------------------- G| o 0 |[|-100] o
Q((1,1),—) = reward = -100 (12) " " a 0
Q Table
100 /
'/

i) InstaDeep™

®© 000 0 0 0
® o0 060 0 0 0
Yo o000 00

®© 000 0 00

]
® 000 00
| Q-learning Example
Source: Gulli, A., Kapoor, A., & Pal, S. (2019). Deep learning -
with TensorFlow 2 and Keras,. Packt Publishing Ltd.

e ——t Acbonl
EPISODE#2: | St 0 N|<|4|—=]|1
Suppose: The random actions a
(0,0) (0.1 (0,0) 0 0 0 0

chosen by the agent are two
successive moves to the right

©n| o | 0, 100 | o

(1,0) (1.1

lwerT o | o | o | 0

Mode: Exploration ~ _.-- e
o WEE (100] © 0 0 0
T an| o 0 |-100]| o0
I_‘_\

Q((0,1),—) = reward = 100 (12) 0 0 0 0

Q Table

N

i}lnstaDeep’” 101

Q-learning Example

EPISODE#3:

The first random action taken
by the agent is a move to the
right.

The Q value of state (0, 0) is
now updated with a non-zero
value. It is like giving credit to
the earlier states that helped
in finding the G state.

'D InstaDeep™

Source: Gulli, A., Kapoor, A., & Pal, S. (2019). Deep learning
with TensorFlow 2 and Keras,. Packt Publishing Ltd.

e

-

Mode: Exploration _.--

f_f_\ r £

Q((0,0),—) = reward + y * max_ Q((0,1), @)

Q((0,0),—) =0+ 0.9 * max(0, 0, 0, 100) = 90

®© 000 0 0 0
® o0 060 0 0 0
Yo oo o o0 00
®© 000 0 00
®© 00 000

o o0 00

0 (a2
Start £
(0,0) ©.1) 0.2)
(1,0) (1. 1) (1,2) >

(1.1) 0 -100 0
(1.2 0 0 0
Q Table
e

Q-learning Example

EPISODE#4:

For this episode, suppose the
agent decides to exploit the
Q-table instead of randomly
exploring the environment.

The Q-table suggests moving to

the right for both states, which
allows reaching the G state.

.D InstaDeep™

Source: Gulli, A., Kapoor, A., & Pal, S. (2019). Deep learning
with TensorFlow 2 and Keras,. Packt Publishing Ltd.

........
........
........
.......
......
.....

Start

(0.0)

(1,0)

(LM

Mode: Exploitation

max_Q((0,0),a") = 90 — with s'=(0,1)

max_Q((0,1),a’) = 100 — with s'=(0,2) or Goal

Acton|
e L= |1
(0,0) 0 | 90 | 0
(01) 0
(0.2) 0
(1,0) 0 0 0
(1.1) 0 -100 0
(12) 0 0 0
Q Table
//
103 //

Q-learning Example

If the Q-learning algorithm continues to run indefinitely, the Q-table will converge.

D InstaDeep™

Q-Table (Epsilon: 0.25)

([
(

[
[
[
|

72.9 90.
81. 100.
0. 0.
72.9 81.
65.61 -100.
0. 0.

81.
90.

81.
90.

d hd d N N

104

........
........
........
.......
......
.....

NN

Tabular Q-learning algorithm

1- Start with an empty table Q(s,a)
2- By interacting with the environment, obtain the tuple (s, a, r, s).

3- Update the Q(s,a) table using the Bellman approximation:

Q(s,a) «r+y maxQ(s',a’)
a’eA

4- Repeat from step 2 until convergence

Note: For step 2, there is no single way for selecting the action. As such, the
exploration-exploitation trade-off should be taken into account when selecting
actions..

'D InstaDeep™

105

........
........
........
.......
......
.....

N

........
........
........

.......

- . " o akA viilla Tieeees
Q-learning: The "blended” update rule S
We have been using the following Bellman approximation for updating the Q-table.
Q(s,a) « r+y maxQ(s',a’)
a’eA
As we take samples from the environment, it's generally a bad idea to assign new values on top of

existing values, as training can become unstable. What is usually done in practice is updating the

Q-table using a “blending” technique, which is simply averaging between old and new values of Q
using a learning rate «€[0, 1]

Q(s,a) < (1—a)Q(s,a) + a (r + y max 0(s’, a’))

This allows values of Q to converge smoothly , even if our environment is noisy.

i>|nstaDeep"“ 106

NN

Tabular Q-learning: Final version

1- Start with an empty table Q(s,a)
2- By interacting with the environment, obtain the tuple (s, a, r, s).

3- Update the Q(s,a) table using the “blended” Bellman approximation:
Q(s,@) « (1-a)Q(s,a) +a(r +ymaxQ(s',a))
a

4- Repeat from step 2 until convergence

'D InstaDeep™

107

........
........
........
.......
......
.....

N

........
........
........
.......

Tabular Q-learning: pseudocode i
Algorithm 14: Sarsamax (Q-Learning)

Input: policy 7, positive integer num.episodes, small positive fraction e, GLIE {¢;}
Output: value function Q (% g, if num_episodes is large enough)
Initialize @ arbitrarily (e.g., Q(s,a) = 0 for all s € § and a € A(s), and Q(terminal-state, -) = 0)

for i «+ 1 to num_episodes do
e -

Observe Sy

t«0

repeat

Choose action A; using policy derived from @ (e.g., e-greedy)
Take action A; and observe Ry, 1, i1

Q(St, Ar) « Q(S:, Ar) + a(Rey1 +ymax, Q(St41,0) - Q(S:, Ar))
tet+1

until S; is terminal;

end

return ()

Source: Reinforcement Learning 101 by Srimanth Tenneti, 2020, Analytics Vidhya

i}lnstaDeep"" 108

Tabular Q-learning: on-policy or off-policy?

Recall:
e On-policy: using the same policy for acting and updating.

e Off-policy: using a different policy for acting (inference) and updating (training).

In Q-learning: We are using the epsilon-greedy policy for acting (acting policy):

Choose action A; using policy derived from @ (e.g., e-greedy)

This acting policy is different from the greedy policy that is used to select the best next-state
action value to update our Q-value (updating policy).

7y maxg Q(St-i-lv a)

This is why we say that Q Learning is an off-policy algorithm.

i>|nstaDeep"" 109

........
........
........
.......
......
.....

N

........
........
........
.......

On-policy value-based learning: Sarsa R

With Sarsa, another
value-based
algorithm, the
epsilon-greedy policy
selects the next
state-action pair, not
a greedy policy.

'D InstaDeep™

Algorithm 13: Sarsa

Input: policy , positive integer num_episodes, small positive fraction a, GLIE {¢;}
Output: value function @) (% ¢ if num-episodes is large enough)
Initialize @ arbitrarily (e.g., @(s,a) =0 for all s € § and a € A(s), and Q(terminal-state,-) = 0)

for i < 1 to num_episodes do
€€

Observe S
Choose action Ay using policy derived from @ (e.g., e-greedy)
t+0

repeat
Take action A; and observe Ry.1,Si+1

__Choose action A, nsing policy derived from @ (e.g., e-greedy)
Q(St, At) < Q(St, At) + o Res1 +7Q(St41, At1) — Q(St, Ar))
t—t+1

until S; is terminal;

end

return ()

Source

: Temporal Difference Methods by Xray, 2020, zhuanlan.zhihu

110 %

On-policy vs Off-policy value-based learning: Recap

e Off-policy: using a different policy for acting (inference) and updating (training).

0o0se action A, using policy derived from C.0.. €-gTee Epsilon Greedy
Policv

Take action A; and observe Ryyq,S;
Q(St, Ar) < Q(St, Ar) + a(Ry41 + ymax, Q(Si41,a)]— Q(St, Ar))

Greedy Policy

Source: Hugging Face Deep RL Course 2018

e On-policy: using the same policy for acting and updating.

Choose action usli olicy derived from e.g.. e-greed

t LI 0 \Eps.ilon Greedy
l‘epeat Policy

Take action A; and observe R, Si+1q
Choose action |/ using policy derived from Q (e.g., e-greedy]

Q(St, Ar) — Q(St, Ae) + a(Resq + Q(St, Aq

.D InstaDee p"" Source: Hugging Face Deep RL Course 2018 1 1 1

........
........
........
.......
......
.....

N

Tabular Q-learning: Quiz!

» Q1 Consider an agent that has a state made of
two discrete variables. The first variable is in
the set {0, 1, 2, 31 while the second variable is
binary. If the agent has 4 possible actions, how
many states does the agent have?

©

3
10

12

i> InstaDeep™

Tabular Q-learning: Quiz!

» Q2 Consider an agent that has a state made of two
discrete variables. The first variable is in the set {0, 1,
2, 3l while the second variable is binary. If the agent
has 4 possible actions, what is the dimension of the
g table (rows, columns)?

i> InstaDeep™

02

A

_Peep Q-learning

-4

a

........
........
........
.......

From Tabular Q-learning — to Deep Q-learning RIS

» &« ¢ 3
Using the Q-table to estimate the Q-values is fine for small discrete stat | O | 1 | o | o
environments. e | 2 | o [o | 3
Hole (0] 2 (0] (0]
However, when the environment has numerous states or is continuous,asin &d¢ | 2 | 0 | 0 | ©

most cases, a Q-table is impractical and not feasible. Source: An troducton to GLearing,
Example:

- Consider a state made of four continuous variables:
- speed€[0,1], angle1€[0,1], angle2€[0,1], acceleration€[0,1]

- How many states?

- discretization step of 0.01— 100 for each state /
- Number of states: 100"4=1000000 states !

'D InstaDeep™

........
........
........
.......

From Tabular Q-learning — to Deep Q-learning RIS

Did you know:
How overcome the Q-table burden? In 2013, DeepMind
- Instead of a table, use any function that maps the state and action onto published a paper
entitled “Playing Atari
the Q value with Deep Reinforcement
- Most popular solution is to use a deep neural network as a function Learning” (DQN paper)

)) .. that outlined their new
approximator to approximate the Q-table: This is known as Deep approach to an old
Q-learning (see the DQN paper) algorithm, which gave

them enough
performance to play six
of seven Atari 2600
games at record levels!

; Deep RL= RL + Neural Network
Source: A Hands-On Introduction to Deep Q-Learning using
OpenAl Gym in Python, 2019, Analytics Vidhya

'D InstaDeep™

https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf

........
........
........
.......
......

Deep Q-learning S
ldea of DQN is to use a neural network with parameters 6, to estimate the Q-values :
Q(s,a; 0)=Q*(s,a)

Inspired by supervised learning, the deep Q neural network learns to provide reliable estimates of
the Q-values based on the interactions with the environment. The learned Q-function is then

used by an agent to select actions.

- Theinput is the state
- The prediction is the Q value for each action
Latida - - Desirable action: action with the largest Q value

Deep Q Neural

Deep Q* learning

Source: An introduction to Deep Q-Learning by Thomas Simonini, 2018, freeCodeCamp

Note that DQN is only applicable to environments with discrete action spaces.

i>|nstaDeep"“ 117

®© 000 0 0 0
® o0 060 0 0 0
Yo oo o o0 00

®© 000 0 00

Standard Deep Q-learning S
The Q-learning algorithm is then modified as follows:

1. Initialize Q(s, a) with some initial approximation.
. By interacting with the environment, obtain the tuple (s, a, , s').
3. Calculate loss: L = (Q(s, @) — r)? if the episode has ended, or
2

L= (Q(s, a) — (r +y max er,ar)) otherwise.
4. Update Q(s, a) using the stochastic gradient descent (SGD) algorithm, by
minimizing the loss with respect to the model parameters.

5. Repeat from step 2 until converged.

y:

Zoom on the loss function: This term is usually denoted y and called
) TD targetj(gr simply target)

|

~

TD error:
'D InstaDeep™ difference between target and prediction 118

Source: Deep Q-Learning for Atari Breakout by
Jacob Chapman and Mathias Lechner , 2020,
Keras

Source: Deep Q-Learning for Atari Breakout by
Jacob Chapman and Mathias Lechner , 2020,
Keras

®© 000 0 0 0
® o0 060 0 0 0
Yo o000 00

®© 000 0 00

Standard Deep Q-learning: What could go wrong? gt

e At each time step, we learn from a tuple (s, a, r, s’) and then throw this experience => our
neural network tends to forget the previous experiences as it overwrites with new
experiences—Risk of forgetting previous experiences and no data efficiency

e |tis more efficient to make use of previous experience, by learning with it multiple times.

il'f’i"t‘?"r‘?"f‘?'f’f’f?’f?"f

Source An |ntroduct|on to Deep Q- Learnlng by Thomas Slmonlnl 2018 freeCodeCamp

D InstaDeep™

........
........
........
.......

Standard Deep Q-learning: What could go wrong? SRS

e Another limitation is that the data used for SGD update are highly correlated:
these data samples are very close to each other, as they belong to the same
episode (we know that future states and rewards depend on previous states
and actions)—Need to reduce correlation between experiences

Episode 1 s1,a1,r2 s2,a2,r3 s3,a3,r4 s4,a4,r5 s5,a5,r6 s6,a6,r7 s7,a7,r8

Episode 2 s1,a1,r2 s2,a2,r3 s3,a3,r4

Episode 3 s1,a1,r2 s2,a2,r3 s3,a3,r4 s4,a4,r5 //‘ l

'D InstaDeep™

........
........
........
®© 000 0 00

Deep Q-learning with Experience Replay ST

e One solution to overcome the data inefficiency and the highly correlated data

samples: Experience Replay buffer
The minibatch contains
experiences from different

Sample minibatch episodes and different policies.
Store experience (uniformly) for This has two advantages:
tuples training e Dbreak the correlations
> ((1) a(l) 7,(1)1 (1)1) bet |
St 3@y sTiq1s Sy etween samples
(2) @ .2 (@) . :
(S'“.) NORNOING) (a; 7,05 s Tiss t+1) {(g(k) O I (ORI ())} N (/(1)) e data efficiency by using
St s @y s Ti419 541 (s (3) 3 (3)l s(s)l) % G Tt S each transition in many
t sTe41 S+

\—,_/ updates

Replay Buffer (D) /
e |f memory is full, the oldest experience is discarded to make space for the
latest one.

'D InstaDeep™

Deep Q-learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z1} and preprocessed sequenced ¢; = ¢(s1)
fort =1.7do
With probability € select a random action a;
otherwise select a; = max, Q*(¢(s¢), a;0)
Execute action a; in emulator and observe reward r; and image x;41
Set s¢41 = 8¢, a4, Ty41 and preprocess ¢y 1 = G(Sp41)
Store transition (¢;, as, 14, ¢p4q) in D
Sample random minibatch of transitions (¢;, a;,7;, ¢;4+1) from D

Setaj. = d 19 for terminal ¢; 41
9i = r; +ymaxy Q(Pj+1,a’;6) for non-terminal ¢; 4
Perform a gradient descent step on (y; — Q(¢;, a;; 0))? according to equation 3
end for
end for

Source: Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, |., Wierstra, D., & Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602.

'D InstaDeep™

124

®© 000 0 0 0
® o0 060 0 0 0
Yo oo o o0 00
®© 000 0 00
®© 00 000

o o0 00

........
........
........
®© 000 0 00

Deep Q-learning: The Instability issue S

Recall that the parameters 6 of the Q network are updated by performing gradient descent in the
direction that minimizes the loss wrt model parameters 6.

L(8)= (Q(s,a;0) - y)? with y=r+ 7y max, Q(s’ ,a’;G)J
Y
The TD target is estimated with the same

neural network with parameters 6, whose
’ parameters are being updated: Instability
-~ - \ ﬂ

/ 4 ”\ we are getting closer to our target but also
\" moving our target! It’s like chasing our own tail!

Source: presentermedia.com, 2023

i>|nstaDeep"“ 125

https://docs.google.com/file/d/1ejur3myrp_RvfpSM4trqA6FMcm9_zUrY/preview

........
........
........

.......

Deep Q-learning: Improving Stability S

To alleviate the instability, one trick is to use a snapshot of the network parameters from a few
iterations ago instead of the last iteration for generating the target. This copy is called the
target network (symbolically denoted with a hat).

The update rule for the network weights are modified as follows:

computed with ©
A
'd N\

Before (Unstable): 0:= 0 + a(r + maxa,Q(s’, a’; 0) — Q(s,a; 9)) VGQ(S, a; 9)

computed with ©°
A

r ~ N

Afterr 0:= 0+ a(r + maxa,Q(S', a; 0) — Q(s,a;0)) VeQ(s, a; 9)
N\ v J

Target-network

The weights of the target network are updated after every T steps:

8 :=0

i>|nstaDeep"“ 126

........
........
........
.......

Deep Q-learning: Connecting the dots! i

Putting it all together:

Initialize replay memory with fixed capacity
Initialize action-value function g with random weights w
Initialize target action-value weights w-
For number of episodes:
Observe state S
Choose action A, from state S, using policy x e - greedy(q(S,A,w))
Take action A, observe reward R, ; and next state S, ,
Store experience tuple(S,A,R,,;,S,,,) in replay memory

+7 t+1)

Obtain random minibatch of tuples (sj,oj,rj”,sm) from replay memory
Set target Y, =1+ moon(sH,o,W')

Update: Aw =« (Y, - Q(sj,oj,w)) Vw Q(sj,oj,w)

Every C steps, resetw w

i) InstaDeep™ 127

| Deep Q-learning: Connecting the dots!

i) InstaDeep™

Initialize network @

Initialize target network Q

Initialize experience replay memory D

Initialize the Agent to interact with the Environment
while not converged do

/* Sample phase

€ + setting new epsilon with e-decay

Choose an action a from state s using policy e-greedy(Q)

Agent takes action a, observe reward r, and next state s’

Store transition (s, a,r, s’,done) in the experience replay memory D

if enough experiences in D then

/* Learn phase

Sample a random minibatch of N transitions from D

for every transition (s;,ai,ri,s., done;) in minibatch do
if done; then

| Y%i=r;
else

| Yi = T + ymaxgeq Q(s], a’)
end

nd
leCzaLlculate the loss £ =1/N Z?:BI(Q(si,a,-) —4;)?
Update @@ using the SGD algorithm by qlinimizing the loss £
Every C steps, copy weights from Q to Q
end

end

Source: Deep Q-network (DQN)-II, by Jordi Torres, 2020, Towards Data Science

128

®© 000 0 0 0
® e 000 0 00
Yo o000 00
®© 000 0 00
®© 00 000

o o0 00

®© 000 0 0 0
® o0 060 0 0 0
Yo oo o o0 00

®© 000 0 00

Deep Q-learning: Soft updates S

. When the weights of the Q network are allocated entirely to the target network after T time steps, this is called hard
updates:

After Ttimesteps: @ =0

. When T is relatively large, which is usually the case (in the order of thousands of steps), learning can be slowed down
significantly. This is because any change in the Q function is propagated only after the target network update (i.e., after
T time steps). These “jumpy” updates could also result in learning instability.

. Toremediate this, soft-updates can be applied instead. The idea is to apply smoother weight updates to the target
network instead of periodical integral update (z<1):

O

0 :=t0+ (1 - 16

— soft-updates 93
----» hard-updates

Source: Udacity Deep RL project 1, Gregor, 2018, wpumacay

i>|nstaDeep"“ 129

O3

_IG

A

ymnasium library

a

-4

®© 000 0 0 0
® o0 060 0 0 0
Yo oo o o0 00

Gymnasium library i

Gymnasium is a project that provides an API for all single agent reinforcement learning
environments, and includes implementations of common environments: cartpole, pendulum,
mountain-car, mujoco, atari, and more.

The API contains four key functions: make, reset, step and render, that this basic usage will
introduce you to.

R

MountainCar-v0 Pendulum-vO
Drive up a big hill. Swing up a pendulum.

CartPole-v0
Balance a pole on a cart
(for a short time).

Reacher-v2
Make a 2D robotreachtoa 1nvertedPendulum-v2

N ™
D InstaDee P randomly located t a[’g Balance a pole on a cart. MsPacman-ram-vO
Source: Creaté your first Open IGym environment, by Savia Lobo, 2018, Packt Hub

........
........
........
.......

Gymnasium library R

The environment is represented in Gymnasium by the Env class, which has the
following members:

e reset(): This resets the environment to its initial state, returning the initial
observation.

observation, info = env.reset(seed=42)

e step(): allows the agent to take an action in the environment. In gymnasium, if the
environment has terminated, this is returned by step. Similarly, we may also want
the environment to end after a fixed number of timesteps, in this case, the
environment issues a truncated signal. If either of terminated or truncated are tru
then reset should be called next to restart the environment. /

observation, reward, terminated, truncated, info = env.step(action)

e render(): This method allows to visualize the agent in action.

i} InstaDeep™

........
........
........
.......

Gymnasium library LT
The environment contains also:
e action_space: This is the field of the Space class, providing a specification
for allowed actions in the environment. It can be discrete, continuous or a

combination of both.

e observation_space : This field has the same Space class, but specifies the
observations provided by the environment. It can be discrete much like action spaces.

%

i} InstaDeep™

04

A

_PQN Improvements

a

-4

®© 000 0 0 0
® o0 060 0 0 0
Yo oo o o0 00

® o000 0 0

DQN Improvements SEE

® Dueling DQN':
Paper: https://arxiv.org/abs/1511.06581

Q(s,0) = V(s) + A(s,0)

Network will have two separate paths for value of state distribution and advantage distribution. On the output,

both paths will be summed together, providing the final value probability distributions for actions. V(s): the value of
being at that state

A(s,0): the advantage of taking that action at that state (how much better is to take this action versus all other
possible actions at that state).

i>|nstaDeep"" 135

DQN Improvements

® Dueling DQN:

By decoupling the estimation, intuitively our DDQN can learn which states are (or are not) valuable without

having to learn the effect of each action at each state (since it's also calculating V(s)).

This is particularly useful for states where their actions do not offect the environment in a relevant way.

i} InstaDeep™

F —

A
]
r
- e
9
F a
| t
a]
CNN CNN CNN : g

e A(s,al)
n]
a
Y
S 4
c — | Als,22) P

A(s,a3)

Source: Improvements in Deep Q Learning: Dueling Double DQN, Prioritized Experience Replay, and fixed..., by Thomas Simonini, 2018, FreeCodeCamp

Q(s,21)

Q(s,a2)

Q(s,a3)

Q values

136

®© 000 0 0 0
® o0 060 0 0 0
Yo oo o o0 00
®© 000 0 00
o o0 0 00

o o0 00

https://www.freecodecamp.org/news/improvements-in-deep-q-learning-dueling-double-dqn-prioritized-experience-replay-and-fixed-58b130cc5682/

DQN Improvements

Paper:

Dueling DQN':
https://arxiv.org/abs/1511.06581

Q(s,a) = V(s) + A(s,0)

Illl<: :>

Source: Improvements in Deep Q Learning: Dueling Double DQN, Prioritized Experience Replay, and fixed..., by Thomas Simonini, 2018, FreeCodeCamp

i> InstaDeep™

Q(s,21)
Q(s,a2)

‘ Q(s,a3)

Q values

137

® 0000 0 00
® e 000 0 00
Yoo o o0 0 0 0
®© 000 0 00
®© 00 000

e o0 00

https://www.freecodecamp.org/news/improvements-in-deep-q-learning-dueling-double-dqn-prioritized-experience-replay-and-fixed-58b130cc5682/

®© 000 0 0 0
® o0 060 0 0 0
Yo oo o o0 00

® o000 0 0

| DQN Improvements i

o Double DQN:

Paper: https://arxiv.org/abs/1509.06461

Problem addressed: Deep Q-Learning tends to overestimate action values.
= Harmful to training performance.

= Can lead to suboptimal policies.

Especially in early stages

Basic TD target:
Q(s,a) =r + y maxa’ Q'(s,a)
Proposed TD target:

Choosing actions for the next state with the actual network but taking values of Q from target network
Q(s,0) =r + y maxa’ Q'(s', argmax Q(st+1,q))

i>|nstaDeep"" 138

https://www.ri.cmu.edu/pub_files/pub1/thrun_sebastian_1993_1/thrun_sebastian_1993_1.pdf

DQN Improvements

Double DQN:

Paper: https://arxiv.org/abs/1509.06461
Problem addressed: Deep Q-Learning tends to overestimate action values.
Remember how we calculate the TD target

Q7% (s,a) =1+~ max Q™ (s, a")

tar

/ = - po g (QTe(5:a1), Q™ (8] a5)50 Q™ (5 5 85))

Q target / \

reward of taking that max q value among all possible
action at that state actions from next state

If the max q value contain any errors, then it will be positively biased and the resulting Q-values will be
overestimated. We are not sure that the chosen action is the best action because:

e An agent may not fully explore the environment
e The environment may be noisy

i> InstaDeep™

139

®© 000 0 0 0
® o0 060 0 0 0
Yo oo o o0 00
® o000 0 0
o o0 0 00

o o0 00

https://www.ri.cmu.edu/pub_files/pub1/thrun_sebastian_1993_1/thrun_sebastian_1993_1.pdf

®© 000 0 0 0
® o0 060 0 0 0
Yo oo o o0 00
® 000 0 00
o o0 0 00

o o0 00

° Double DQN:

Overestimation in the face of uncertainty can be useful, e.g: at the beginning of training it can be helpful to
overestimate Q Tt (s, o) for unvisited or rarely visited (s, a) pairs because this increases the likelihood that
these states will be visited, allowing an agent to gain experience about how good or bad they are.

However, DQN overestimates Q Tt (s, o) for the (s, o) pairs that have been visited often.

This becomes a problem if an agent does not explore (s, a) uniformly. Then the
overestimation of Q Tt (s, o) will also be nonuniform and this may incorrectly change the
rank of actions as measured by Q Tt (s, a). Under these circumstances, the a an agent thinks
is best in s isin fact not the best action to take.

Solution: when we compute the Q target, we use two networks to decouple the action selection from the target
Q value generation.
e use our DQN network to select what is the best action to take for the next state (the action with the
highest Q value).
e use our target network to calculate the target Q value of taking that action at the next state.

(zgril)()lll)lL‘])(zN (S* (l.)‘l‘ T A"‘(QW‘; (S/‘ max ('27“’ (S," (Ll)‘)

a’

i InsfaDeep™ 140

®© 000 0 0 0
® o0 060 0 0 0
Yo oo o o0 00
®© 000 0 00

o o0 0 00

| DQN Improvements et

® Noisy networks:

Paper: https://arxiv.org/pdf/1706.10295.pdf
Problem addressed: exploration of the environment.

Independent Gaussiaon noise: random value drawn from normal distribution
Factorized Gaussian noise: keeping only two random vectors: one with the size of input and another with size of

the output of the layer.

i>|nstaDeep"" 141

https://arxiv.org/pdf/1706.10295.pdf

05

General advices

-

-4

A

a

........
........
........
.......
......

How do | frame my task in RL S

e Follow the MDP formalism.

e Start with simplified version of your task until you see signs of life.

e Simplify the feature space. Once it starts working, make the task harder until you solve the full
task.

e Simplify the reward function. Formulate so it can give you FAST feedback to know whether you're

doing the right thing or not.

i>|nstaDeep"" 143

........
........
........
.......

How can | diaghose my RL agent behaviour? RIS
= Sanity checks

e Sensitivity to the change in EVERY hyper parameter is considered as bad sign = non robustness.

e Look at the episode return min/max/stdev/imean, max is important not just mean
e Look at the episode length (sometimes more informative than return.

e Health indicators differ from one class of algorithm to another. Policy gradients VS Q-learning

i}lnstaDeep"" 144

........
........
........
.......

How can | diagnose my RL agent behaviour R
Q-learnings

e Metrics:
o How to measure if your agent is converging to some locally optimal policy = epsilon-greedy
m = Epsilon schedules are important

o Learning rate schedule are helpful. This should be decreasing over time.
o TD-erroris decreasing

o The action-values estimates should increase as the cumulative reward increases.

i}lnstaDeep’” 145

........
........
........
.......

How do | evaluate my RL agent KL

e Use a separate test environment to evaluate the performance of your agent at a given time.

e Evaluate your agent for n test episodes and and average the reward per episode to have a good
estimate. (n between 5 and 20)

i}lnstaDeep"" 146

........
........
........
.......
......
.....

Course #3

Policy Based methods

—

® 0000 0 00
® 0000 0 00
Yoo o o0 0 0 0

®© 000 0 00

Recall: Values and policy SEEE

Recall: The ultimate goal of an RL agent is to find a policy 1t that achieves a lot of reward over the long
run. We find this policy through training. To train the agent,

v(s) / Q(s,a) m(als)

Value-Based Learning | Policy-Based Learning
Teach the agent to learn which state is more valuable and | The agent learns a policy function directly without passing through
then take the actions that leads to the more valuable states ! a value function. The agent learns which action to take, given the
| state is in.

9
T
T

Source: Hugging Face Deep RL Course 2018 Source: Hugging Face Deep RL Course 2018 148

i> InstaDeep™

........
........
........
®© 000 0 00

®© 00 000

Policy representation S

- Recall that in Q-learning, the Q function was parameterized by a neural network that returns the
values of actions as scalars. These values then dictate to us how to behave as we select the action

with the largest value.
- In policy-based methods, we learn a policy function directly by parameterizing it:

at(atlst) — at(atlst; 0)

- Learning the policy means that we are going to look for the parameters @ that maximize a certain

objective function J(H), which is a performance measure with respect to parameter 0.

i>|nstaDeep"“ 149

........
........
........

.......

Policy representation: Deterministic Policies SR

e Deterministic Policy:
T:s—a
Instead of sampling from the action probabilities, the agent need only choose the greedy action.
The last layer of the neural network representing the policy is the action to be taken.

i}lnstaDeep’” 150

®© 000 0 0 0
® o0 060 0 0 0
Yo oo o o0 00

®© 000 0 00

Policy representation: Stochastic Policies SRS

e Stochastic Policy:
o Categorical policies:
n(als,; 0)=Pla ls]=softmax(a)
a.=max. w(als,; 6)
The agent passes the current environment state as input to the network, which returns action
probabilities. Then, the agent samples from those probabilities to select an action.

Example: Atari game

Policy Network
g NOQ P —
o FIRE [m===m
g LEFT jmm
5 PRICHT | —
3 0 05
s_ Action Probabilities
t

Source: modified from Qu, X., Sun, Z,, Ong, Y. S., Gupta, A., & Wei, P. (2020). Minimalistic attacks: How little it takes to fool deep reinforcement learning policies. IEEE
Transactions on Cognitive and Developmental Systems, 13(4), 806-817.

i>|nstaDeep"" 151

........
........
........
.......

Policy representation: Stochastic Policies SRS

e Stochastic Policy:
o (Gaussian policies: used mostly with continuous action spaces. The policy is a sample from a
Gaussian distribution.

n(als,; 6)~ N (u(s), o*(s,))

The mean u and standard deviation of the normal distribution are both functions of the state
features.

i}lnstaDeep"" 152

Quiz!

The neural network that approximates the policy takes the
environment state as input. The output layer returns the
probability that the agent should select each possible
action. Which of the following is a valid activation function
for the output layer??

A: linear (i.e; no activation function)
B: Softmax

C: RelLu

i> InstaDeep™

Quiz!

For continuous action spaces, the neural network has one node for
each action entry (or index). For example, consider the action
space of the bipedal walker environment, shown in the figure

below.

Actions

Type: Box(4) - Torque control(default) / Velocity control - Change inside
/envs/box2d/bipedal_walker.py line 363

Num Name Min Max
Hip_1 (Torque / Velocity) +1
Knee_1 (Torque / Velocity) +1
Hip_2 (Torque / Velocity) +1

Knee_2 (Torque / Velocity) +1

i> InstaDeep™

https://github.com/openai/gym/wiki/BipedalWalker-v2

Quiz!

— In this case, any action is a vector of four numbers, so the output
layer of the policy network will have four nodes.

— Every entry in the action must be a number between -1 and 1

Which of the following describes a valid output layer for the
policy?

A: output layer with RelLu activation function.

B: output layer with softmax activation function

C. output layer with tanh activation function

i> InstaDeep™

........
........
........
.......

Why policies may be more attractive than values? i

- Simplicity: The policy is all what we are looking for when we are solving a RL problem. Therefore,
whenever the agent is in a given state, it is more straightforward to use the policy directly to decide
its next move instead of computing and/or storing the value of a state or action and then select the
action that maximizes these values as in value-based methods. Doing this extra work of computing
the Q or V values could be tedious especially for large action spaces. Why do the extra work?

Value-based
Policy-based learning
learning P -
Go Right Please wait, | am still

calculating Q value, only
41891 actions left...

Source: Introduction to Reinforcement learning policy gradient, 2020, PyLessons 156

'D InstaDeep™

| Why policies may be more attractive than values?

- Stochastic policies: An extra benefit of policy-based methods is that they can learn a stochastic
policy while value functions can’'t. One advantage of a stochastic policy is that it can capture the
uncertainty/stochasticity of the environment. With a stochastic policy, the same state could lead to
different actions (it is possible to have more than one action to choose from in a certain situation).

- For example: In a poker game, the agent may not take the same action in response to the same
hand since the probability of winning or losing depends on the opponent’s hand and how the
betting has proceeded.

i> InstaDee pm Source: PokerListings, 2023 157

........
........
........

| Why policies may be more attractive than values?

- High dimensional or continuous action spaces: In Q-learning for example, to be able to decide
on the best action to take having Q(s,a) we need to solve a small optimization problem finding a,
which maximizes Q(s,a). In the case of Atari with several discrete actions this wasn’t a problem: we
just approximated values of all actions and took the action with the largest Q.

But, if we have a large number of possible actions or an infinite possibility of actions? This
optimization problem becomes hard as Q is usually represented by nonlinear NN, so finding the
argument that maximizes the function’s values can be tricky. In such cases, it's more feasible to

avoid values and work with the policy directly.

i> InstaDeep™

Source: Hugging Face Deep RL Course 2018

Yo oo o o0 00

For a self-driving car,, you can have a near
infinite choice of actions (it can turn left by
turning the wheel at 15°, 17.2°, 20°, 21,1°,
21,2°, honk, turn right at 20°, etc...)

158

Ol

Policy gradients

_?1ethods

-4

A

a

........
........
........
.......

Policy gradients: A subclass of policy-based methods -::::

Policy gradient methods are a subclass of policy-based methods that estimate the weights of a
policy through gradient-ascent.

In Policy-gradient methods, we optimize the parameter @ directly by performing gradient ascent

on the objective function J(H), which is the performance measure.

Note that there are other classes of policy-based methods where we optimize the parameter @

indirectly by maximizing the local approximation of the objective function with techniques like hill
climbing, simulated annealing or evolution strategies.

i>|nstaDeep"“ 160

®© 000 0 0 0
® o0 060 0 0 0
Yo oo o o0 00

®© 000 0 00

| Policy gradients: Big picture S

We just learned that policy-gradient methods aim to find parameters 6 that maximize the expected return.
Question: How we're going to change our network parameters using the expected return to improve the
policy?

Answer: The idea is that we're going to let the agent interact during an episode. And if we win the episode,
= We can change the network weights a bit to make it more likely to select the actions it selected while in those
states in the future.

If the agent has lost the game, we update the network weights so that it is less likely to repeat these
decisions in the future.

So, eventually, for each state-action pair, we want to increase the P(a|s): the probability of taking that action
at that state. Or decrease if we lost.

LEFT RIGHT WON
BN - - N e
o _ o RIGHT LEFT LOST
= BR —E (-1)

.D | nsta D ee p"" Source: Deep Reinforcement learning nanodegree program, Udacity 2022 16 1

Policy gradients: Big picture

The Policy-gradient algorithm (simplified) looks like this:

Training Loop:
Collect an episode with the 11 (policy).
Calculate the return (sum of rewards).

Update the weights of the m:

If positive return — increase the probability of each (state,
action) pairs taken during the episode.

If negative return — decrease the probability of each (state,
action) taken during the episode

In policy-based methods, the optimization is most of the time on-policy since for each update, we
only use data (trajectories) collected by our most recent version of 1,

i>|nstaDeep"“ 162

........
........
........
.......
......
.....

........
........
........
.......

Policy gradients: More formally S

Trajectory: sequence of states and actions.

T=SO, ao, S @y e Sy A

° H’ H

A trajectory could correspond to a full episode or a part of the episode.

Horizon is the length of a trajectory, denoted by H.

R(T) is the sum of discounted rewards from that trajectory.

R(T) =r +p rp?r, ., p7r,

i}lnstaDeep"" 163

........
........
........

.......

Policy gradients: More formally S

Policy-gradient is an optimization problem: we want to find the parameters 6 that maximize
our objective function J(6). So, we need to use gradient-ascent. Our step for gradient ascent is:

a is the step size that is generally allowed to decay over time. We can repeatedly apply this
update rule in the hopes that 6 converges to the value that maximize J(©).

i>|nstaDeep"“ 164

Policy gradient: Quiz!

Q1 Why do we use gradient ascent instead of
gradient descent to optimize J(0)?

i> InstaDeep™

We want to minimize J(0) and gradient ascent gives us
the gives the direction of the steepest increase of J(O)

We want to maximize J(B) and gradient ascent gives us
the gives the direction of the steepest increase of J(0)

........
........
........

.......

Policy gradients: More formally S

Objective Function: gives us the performance of the agent given a trajectory and it outputs the
expected return (called also expected cumulative reward).

J(H) — ETNW[R(T)]

2 3
R({T) = rep1 + T2 + 7 T3 + YV Tepa + - -
Return: cumulative reward Gamma: discount rate

Trajectory (read Tau)
Sequence of states and actions

i}lnstaDeep’” 166

........
........
........
®© 000 0 00

Policy gradients: More formally S

Objective Function: gives us the performance of the agent given a trajectory and it outputs the
expected return (called also expected cumulative reward).

J(0) = Err|R(7)]

« The expected return can be calculated as a weighted average as follows:

Cumulative
Probability of the trajectory returnfrom
(depends on O since it defines trajectory
the policy that it uses to select
the actions of the trajectory
which as an impact of the
states visited).

i>|nstaDeep"" 167

........
........
........
.......

Policy gradients: More formally S

If we develop further the definition of the objective function provided earlier, the objective function can
be expressed in terms of the policy as follows:

:[H

t=0

P(3t+1 |St, at)ﬂ'&(at|3t)]

Probability of
taking that
action a at

states,

There are two problems with using the expression above for computing the derivative of J(6)

-Problem 1: We can't calculate the “true” gradient of J(0) as it involves calculating the probability of
each possible trajectory— computationally expensive. Instead, we would rather use sample-based
estimate based on the experience collected from some trajectories.

- Problem 2: The expression above involves the knowledge of state distribution (i.e., environment
dynamics). But, this may not be known especially if our focus is on model-free reinforcement learning.

i>|nstaDeep"“ 168

Policy gradients: More formally

How overcome these two problems and find an estimate of the gradient of the objective
function?

Good news: Policy gradient theorem!

This theorem will help us in deriving a differentiable expression for the objective function that does not
involve the use of the state distribution. The policy gradient theorem states that:

For any differentiable policy and for any policy objective function, the policy gradient is:

VoJ(0) = Er,|Vglog mg(as|s:) R(T)]

Source: Hugging Face Deep RL Course 2018

i>|nstaDeep"“ 169

........
........
........
.......

Policy gradients: REINFORCE S

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for .

Input: a differentiable policy parameterization 7 (a|s, 6)
Algorithm parameter: step size a > ()

Initialize policy parameter 6 € R4 (e.g., to 0)

1 Loop forever (for each episode):

2 Generate an episode Sy, Ag, Ry,...,S7_1,Apr_1, Ry, following = (-|-, @)
3 Loop for each step of the episode t =0,1,...,T — 1:
T ey
M S (Gy)
5 0+ 0+ aGVinm(A,S;,0)

Source: Reinforcement Learning-An Introduction, a book by Richard Sutton

i}lnstaDeep’” 170

https://en.wikipedia.org/wiki/Richard_S._Sutton

........
........
........
.......

Policy gradients: REINFORCE LT
More into the gradient of the objective function:
1 i), (i i
VoJ(0) ~ § = — Z Z Vo logm(ag)|s§))R(T()

_m

et =1 1=0

Probability of the agent to Cumulative

Scaling factor select action at from state st return of
inversely ‘i—th
proportional trajectory

to the number
of trajectories
(m)

The gradient is equal to the gradient of the log-probability of the action taken and it is scaled by the return :
- If return R(7) is high: it will push up the probabilities of the state-action combinations
- otherwise, it will push down the probabilities of the state-action combinations

= In other words, we are trying to increase the probability of the actions that have given us

good total reward and decrease the probability of actions with bad final outcomes.
i>|nstaDeep"" 1

Policy gradients: REINFORCE

Difference from Q-learning:

e No explicit exploration is needed.

e In Q-learning: epsilon-greedy strategy. Now, with probabilities returned by the network, the
exploration is performed automatically. In the beginning, the network is initialized with random
weights and the network returns uniform probability distribution. THis distribution corresponds to
random agent behaviour.

e Noreplay buffer is used. PG belong to the on-policy methods class. We can't train on data obtained
by an old policy.

e NO target network is needed.

i>|nstaDeep"“ 172

........
........
........
.......
......
.....

........
........
........
.......

Policy gradients: REINFORCE limitations SRS

e The update process is very inefficient. We run the policy once, update once, and then throw away
the trajectory.

e Correlation between samples: training samples in a single episode are usually highly correlated,
which is bad for SGD training. For DQN, this was solved by considering a replay buffer. But, this
solution is not applicable to the policy gradient family because these methods are on-policy. To
solve this, the idea is, instead of communicating with one environment, we use several parallel
environments and use their transitions as training data.

e Local optimum and exploration issues: Even with the policy represented as a probability
distribution, there is a risk that the agent converges to some local optimal policy and stops
exploring the environment. In DQN, this was solved by epsilon-greedy action selection. In
policy-gradient methods, one solution for this is the use of entropy bonus.

i>|nstaDeep"“ 173

........
........
........
.......

Policy gradients: The Entropy Bonus S

To prevent the agent from being stuck in a local optimum, we first compute the entropy of the policy:
H(m) = — X m(als) logm(als)

The entropy is a measure of uncertainty. It is positive and high when all actions have the same
probability. The entropy become minimal if the agent has 1 probability for one action and O for all
others (i.e., when the agent is 100% sure about an action)

Once the entropy is computed, it is then subtracted from the loss function in order to punish the agent
for being too certain about the action to take. Note that the loss function is simply the negative of the
objective function.

= this introduces new hyperparameter called entropy beta. It is the scale of the entropy bonus in the
loss function expression.

i>|nstaDeep"“ 174

Policy gradients: REINFORCE limitations

e High gradients variance: The gradient formula is proportional to the discounted reward while the
range of this reward is heavily dependent on the environment.

For example, in the cartpole, if the pole is held for 5 steps, the reward (undiscounted) is five. But, if
we hold it for 100 steps, the total reward is 100. So, there is a large difference between these two
scenarios. We need to do something about this, otherwise the training could become unstable.

The simplest way for handling this is to subtract a value called baseline B(s,) from the return. This

baseline B(s,) can be any function as long as it does not depend on the action. Some possible choices
of the baseline are:

m A constant value, which is normally the mean of the discounted rewards

m The moving average of the discounted reward
m The value of the state V(s)

i>|nstaDeep"“ 175

........
........
........
.......
......
.....

Policy gradients: REINFORCE with baseline

REINFORCE with Baseline (episodic), for estimating mg ~ T,

Input: a differentiable policy parameterization 7(als, @)
Input: a differentiable state-value function parameterization o(s,w)
Algorithm parameters: step sizes a? > 0, a%¥ > 0

Initialize policy parameter 6 € R% and state-value weights w € R (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, R1,...,S7_1,Ar_1, Ry, following 7(-|-, 0)
Loop for each step of the episode t =0,1,...,T — 1:
G+ EZ=t+1 "yk_t_le
) G —0(S;,w)
w— w4+ aVIVo(S;,w)
0«0+ afsVinn(AlS.,0)

(Gt)

Source: Reinforcement Learning-An Introduction, a book by Richard Sutton

i> InstaDeep™

176

........
........
........
.......
......
.....

https://en.wikipedia.org/wiki/Richard_S._Sutton

........
........
........
.......

Learning material S

e Reinforcement Learning-An Introduction, a book by Richard Sutton and his doctoral advisor
Andrew Barto. An online draft of the book is available here

Teaching material from David Silver including video lectures is a great introductory course on RL
Technical tutorial on RL by Pieter Abbeel and John Schulman (Open Al/ Berkeley Al Research Lab).
Reinforcement learning hands-on (Second edition), a book with tutorials by Maxim lapan.
Huggingface deep RL course

Deep Reinforcement Learning nanodegree on_Udacity.

Andrej Karpathy’s Deep Reinforcement Learning: Pong from Pixels is a great introduction to build
motivation and intuition.

i>|nstaDeep"“ 177

https://en.wikipedia.org/wiki/Richard_S._Sutton
https://en.wikipedia.org/wiki/Andrew_Barto
http://incompleteideas.net/book/the-book-2nd.html
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.htm
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.htm
http://people.eecs.berkeley.edu/~pabbeel/nips-tutorial-policy-optimization-Schulman-Abbeel.pdf
https://github.com/PacktPublishing/Deep-Reinforcement-Learning-Hands-On
https://www.udacity.com/course/deep-reinforcement-learning-nanodegree--nd893
http://karpathy.github.io/2016/05/31/rl/

........
........
........
.......
......
.....

i>|nstaDeep”"

+ |

THANK YOU!

