
Reinforcement Learning for
Decision-Making Problems

Imen Jendoubi
AI Research Engineer at InstaDeep
i.jendoubi@instadeep.com

17/02/2025…….

1

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

Who this course is for

The main target audience are should have some knowledge in Machine Learning, but interested
to get a practical understanding of the Reinforcement Learning domain. The attendee should be
familiar with Python and the basics of deep learning and machine learning.

2

What this course covers

Introduction to RL and main formal models.
Aspect of practical RL using open-source library gym.
Value based methods
Policy based methods

3

Course Plan:

Deep Reinforcement Learning

An introduction to RL

Policy-
gradient
methods

Introsuccess
stories of

RL

ML
paradigm

s

Value-based
methods

key
concepts

and
terminology

RL
taxonomies

Policy-based
methods

Deep
Q-learning

tabular
Q-learning

Gymnasi
-um

library

DQN
improve-

ments

4

5

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

Course #1

What is Reinforcement
Learning?

Machine
learning

paradigms01

6

Machine learning paradigms

Machine learning

Reinforcement
Learning

Supervised
Learning

Unsupervised
Learning

7

Supervised learning
Data: (X,Y)
● X is i.i.d sampled data,
● Y is label

Goal: build a function that maps some
input into some output X-> Y, when
given a set of example pairs.

Applications
● Text classification
● Image classification and object location
● Regression problems
● Sentiment analysis

Source: Supervised vs. Unsupervised learning, by Devin Soni, 2018, Towards
Data Science

Source: Supervised vs. Unsupervised learning in 3 Minutes, by Alan Jeffares, 2018, Towards
Data Science

8

Unsupervised learning

Data: X

Just data, no labels!

Goal: Learn some underlying hidden
structure of the data

Applications

● Resolves Clustering,
dimensionality reduction, etc.

Source: Introduction to Unsupervised Learning (Kmeans clustering), by Sachin, 2021, Medium

9

 Reinforcement learning

An autonomous agent learns how to solve
a task, through trial and error, from
interaction with an environment

Goal: Problems involving an agent
interacting with an environment which
provides numeric reward signals that
reflect how good its actions were.

Source: Reinforcement Learning real-world examples, by Ajitesh
Kumar, 2022, VitaFlux

10

 Comparison
Takeaways:

● Supervised Learning is about learning to predict from examples of correct predictions
● Unsupervised learning is about learning hidden patterns within unlabeled data
● Reinforcement learning is about agents learning by themselves how to take good

actions in their environments.

11

Success stories of
RL02

12

 Success stories of RL: The Tip of the Iceberg!

13

 Success stories of RL: Games
#1 ATARI
Source: D. Silver, “Lecture Notes in advanced topics in Machine Learning’’, 2020.
From https://www.davidsilver.uk/wp-content/uploads/2020/03/intro_RL.pdf

#4 Dota2
Source: Nested - Artificial Intelligence, 2020.
From https://nested.ai/2020/10/26/dota-2-with-large-scale-deep-reinforcement-learning/

 #2 AlphaGo
Source: AlphaGo Movie, 2017.
 From https://www.youtube.com/watch?v=8tq1C8spV_g&t=1s

#3 AlphaZero
Source: Google DeepMind, 2017.
 From https://www.youtube.com/watch?v=WXHFqTvfFSw

14

https://www.davidsilver.uk/wp-content/uploads/2020/03/intro_RL.pdf
http://www.youtube.com/watch?v=WXHFqTvfFSw
https://nested.ai/2020/10/26/dota-2-with-large-scale-deep-reinforcement-learning/
https://www.youtube.com/watch?v=8tq1C8spV_g&t=1s
https://www.youtube.com/watch?v=8tq1C8spV_g&t=1s
http://www.youtube.com/watch?v=8tq1C8spV_g
https://www.youtube.com/watch?v=WXHFqTvfFSw
https://www.youtube.com/watch?v=WXHFqTvfFSw

 Success stories of RL: Biology

Example: Protein Design

Reinforcement learning: From board games to protein design

15

https://www.sciencedaily.com/releases/2023/04/230420141759.htm

 Success stories of RL: Biology

AlphaFold: Using AI for scientific discovery
Source: Deepmind, 2020
From https://www.deepmind.com/blog/alphafold-using-ai-for-scientific-discovery-2020

Protein folding explained
Source: Google DeepMind, 2020.

From https://www.youtube.com/watch?v=KpedmJdrTpY

16

https://www.deepmind.com/blog/alphafold-using-ai-for-scientific-discovery-2020
https://www.deepmind.com/blog/alphafold-using-ai-for-scientific-discovery-2020
http://www.youtube.com/watch?v=KpedmJdrTpY
https://www.youtube.com/watch?v=KpedmJdrTpY
https://www.youtube.com/watch?v=KpedmJdrTpY

 Success stories of RL: Autonomous driving

Self-Driving Cars
Source: 9 Reinforcement Learning Real-Life Applications, by Pragati Baheti, 2022, V7 Labs

17

https://www.v7labs.com/blog/reinforcement-learning-applications#h1

 Success stories of RL: Robotics

Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation
Source: Peter Pastor [Youtube channel], 2018
From: https://www.youtube.com/watch?v=W4joe3zzglU

18

http://www.youtube.com/watch?v=W4joe3zzglU
https://www.youtube.com/watch?v=W4joe3zzglU

 Success stories of RL: Healthcare

Source: Yu, C., Liu, J., Nemati, S., & Yin, G. (2021). Reinforcement learning in
healthcare: A survey. ACM Computing Surveys (CSUR), 55(1), 1-36.

Example of dynamic treatment regimes (DTRs): To
create a DTR, someone must input a set of clinical
observations and assessments of a patient. Using
previous outcomes and patient medical history, the
learning system will then output a suggestion on
treatment type, drug dosages, and appointment
timing for every stage of the patient’s journey.

19

https://arxiv.org/pdf/1908.08796.pdf

 Success stories of RL: Natural Language Processing

In NLP, RL can be used in text summarization,
question answering, and machine translation just to
mention a few.

Source: Neptune.ai
retrieved from: https://neptune.ai/blog/reinforcement-learning-applications

For more details:Link

20

https://neptune.ai/blog/reinforcement-learning-applications
https://github.com/adityathakker/awesome-rl-nlp

 Success stories of RL: Recommendation systems

The “Frequently Bought Together” section on
Amazon, a “Customers Also Liked” tab online at
Target, and the “Recommended Reading” articles
from news outlets all utilize learning machines to
generate recommendations. Specifically for news
reading, RL agents can track the types of stories,
topics, and even author names someone prefers
so that the system can queue the next story they
think they would enjoy.

21

 Success stories of RL: Energy Conservation

Source

RL-based Home energy management systems

22

https://www.deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-by-40
https://www.semanticscholar.org/paper/Residential-Energy-Management-with-Deep-Learning-Wan-Li/ce02b13f80c14c7a2116f83171415c7751a043ee

 Success stories of RL: Traffic Light Control

The Continuous traffic monitoring
in complex urban networks helps
build a literal and figurative “map”
of traffic patterns and vehicle
behavior.

Source: Kim, D., & Jeong, O. (2019). Cooperative traffic signal control with traffic flow
prediction in multi-intersection. Sensors, 20(1), 137.

23

 Success stories of RL: Marketing and advertising

For example,
marketing and
advertising
platforms can use
RL to associate
similar companies,
products, and
services to
prioritize for
certain customers.

Source

24

https://dlabs.ai/blog/5-ways-machine-learning-can-transform-your-digital-marketing/

Key concepts and
terminology03

25

 Reinforcement Learning

Reinforcement Learning is the study of agents and how they learn to perform complex tasks by trial
and error. It formalizes the idea that rewarding or punishing an agent for its behavior makes it more
likely to repeat or forego that behavior in the future.

Source: TDM: From Model-Free to Model-Based Deep Reinforcement Learning, by
Vitchyr Pong, 2018, Berkeley Artificial Intelligence Research

Source: Simple Beginner’s guide to Reinforcement Learning & its implementation, by
JalFaizy Shaikh, 2017, Analytics Vidhya

26

https://people.eecs.berkeley.edu/~vitchyr/
https://www.analyticsvidhya.com/blog/author/jalfaizy/

 Deep Reinforcement Learning

Source: Kim, D., & Jeong, O. (2019). Cooperative traffic signal control with traffic flow prediction in
multi-intersection. Sensors, 20(1), 137.

27

 RL framework

Source: Reinforcement Learning Real-world examples, by Ajitesh Kumar, 2022, Analytics Yogi.

28

 RL framework: example#1

Goal: reach the diamond block (S4)

State: the position of the agent (s1
or s2, or s3, etc.)

Action: move up, down, right, left

Reward: (+1) reward if it reaches the
diamond block and (-1) reward if it
reaches the fire pit. Source: Reinforcement Learning Tutorial, Javatpoint

29

 RL framework: example#2

Goal: pick objects with different
shapes

State: Raw pixels from camera

Action: move arm, grasp

Reward: positive (+1) when pickup is
successful

Source: Introduction to Deep Reinforcement Learning (Deep RL) by Lex
Fridman, 2019, MIT Deep Learning 6.S191

30

 Markov decision process
An RL problem is typically formulated as a Markov Decision Process (MDP)

A (finite) MDP consists in a tuple (S, A, P, R, 𝛾) where:

● S is a (finite) set of states
● A is a (finite) set of possible actions
● P: S x A x S -> [0, 1], P is the transition probability distribution modeling the system

dynamics: P(s, a, s’)=P(st+1=s’ | st=s, at=a)
● R: S x A x S -> |R (set of real numbers) is the reward function
● 𝛾: the discount factor

31

 Markov decision process
Markov Property:

- the future is independent of the past given the present

A stats S is Markov if and only if:

● Once the current state is known, the history of information
encountered so far may be thrown away, and that state is a
sufficient statistic that gives us the same characterization of
the future as if we have all the history.

32

 Markov decision process
In a typical RL problem, at time t, an agent interacts with the
environment and takes an action at when the environment is in
state st. Consequently, the environment moves to a new state
st+1, and the agent receives a reward rt+1 that expresses how
good its action was.

Note that the Markov Property implies that our agent needs
only the current state to decide what action to take and not the
history of all the states and actions they took before.

The goal of the MDP is to find a policy, often denoted as ℼ, that
yields the optimal long-term reward.

33

 Markov decision process
Markov Property:

● Could the blackjack card game verify the Markov Property?

Source: Mobile Premier league, 2022

34

 Markov decision process
Markov Property:

● Could the blackjack card game verify the Markov Property?

● The game can be played successfully just by knowing our current state
(what cards we have in hand and the opponent’s one face-up card)

Source: Mobile Premier league, 2022

35

▪ Q1: Which of the following control problem or
decision task could have a Markov property?

MDP: Quiz!

Driving a car (1)

Decide whether to Invest in a stock or not (2)

Choose a medical treatment for a patient (3)

Diagnose a patient’s illness (4)

36

 States and observation
A state s describes the environment completely to the agent. Nothing is hidden in the state.
● e.g: a robot might have states like joint angles, velocity, position as the states defining it.

An observation o is a partial description of a state, which may omit information.

● Complete Observation: when the agent is able to observe the complete state information
that defines the status of the environment/ world after the agent has acted out a certain
action, in it.
○ e.g: chess can be represented completely by the positions of all the pieces on the

board.
● Partial Observation: when the agent is able to observe only partial information regarding

the state of the environment.
○ e.g: poker since a player cannot observe other players’ cards

37

 States and observation
A state be represented as:
● Scalar (rank-0 tensor): temperature
● Vector (rank-1 tensor): [position, velocity, angle, angular velocity]
● Matrix (rank-2 tensor): grayscale pixels from an Atari game
● Data cube (rank-3 tensor): RGB color pixels from an Atari game

State preprocessing:
● Cleanup
● Numerical representation
● Standardization: so that each feature has a similar range and mean
● …

38

 Actions
Actions are the things that the agent can perform in order to influence the environment.

Different environments allow different kinds of actions. We distinguish:

● Discrete actions mean that the agent has a finite action space to take the action from.
Example: In a maze, the agent can go up, down, left or right..

● Continuous actions have some value attached to the action. The agent has an infinite
action space. Example: For a robotic arm, actions involve controlling the angles or positions
of its joints, which exist in a continuous space.

● Hybrid actions: mix of both. Example: for a robot learning to navigate and pick up objects,
actions include discrete movements (forward, backward, turn) and continuous actions for
grasping objects (adjust gripper position or force)

The set of all valid actions in a given environment is called the action space.

39

 Reward
 A reward is a scalar feedback signal that indicates how well the agent is doing at a given step.

rt+1= R (st, at, st+1)

where R (st, at, st+1) denotes the the reward received for being in a state st, taking an action at
and ending up in a state st+1.

The reward is frequently simplified to just a dependence on the current state rt+1= R (st) or
state-action pair rt+1= R (st, at)

The agent’s sole objective is to maximize the total reward it receives over the long run. The
reward should therefore be designed in a way that incentivizes the desired
behavior.

40

 Reward
A reward signal can be dense or sparse:

● A sparse reward is one which produces a neutral reward signal (usually r = 0) for most of
the time steps, and a positive and negative reward only when the environment terminates.

● A dense reward is the opposite: it provides a lot of nonneutral reward signals indicating
whether the last action was good or bad, so that in most time steps an agent will receive a
positive or negative reward.

● Sparse reward are usually more challenging than dense rewards

41

 Example of MDP Formulation
● A mobile robot has the job of collecting empty soda cans

● It runs on a rechargeable battery

● Robot decisions are based on the energy level: high or low

● In each state, the agent can decide to (1) search for a can for

a certain period of time (2) remain stationary and wait for

someone to bring it a can (3) recharge battery

● Reward is

○ Generally equal to the number of collected cans
○ 0 in recharge mode
○ negative if runs out of power while searching (very bad as

agent needs to be rescued)

Source: Google Research, 2023

42

 Example of MDP Formulation

● State Space?
● Set of possible actions ? A(low) and A(high)
● Reward?
● Transition probabilities?

Source: Google Research, 2023Source: Reinforcement Learning-An Introduction, a book by Richard Sutton

43

https://en.wikipedia.org/wiki/Richard_S._Sutton

 Example of MDP Formulation: State

● State Space={high, low}

Source: Google Research, 2023Source: Reinforcement Learning-An Introduction, a book by Richard Sutton

44

https://en.wikipedia.org/wiki/Richard_S._Sutton

 Example of MDP Formulation: Action

● Set of possible actions ?
○ A(low)={search, recharge, wait}
○ A(high)={search, wait}

Source: Google Research, 2023Source: Reinforcement Learning-An Introduction, a book by Richard Sutton

45

https://en.wikipedia.org/wiki/Richard_S._Sutton

 Example of MDP Formulation: Transition Probability

● Transition probabilities?

Source: Google Research, 2023

Source: Reinforcement Learning-An Introduction, a book by Richard Sutton

46

https://en.wikipedia.org/wiki/Richard_S._Sutton

 Example of MDP Formulation: Reward

● Reward?

Source: Google Research, 2023

Source: Reinforcement Learning-An Introduction, a book by Richard Sutton

47

https://en.wikipedia.org/wiki/Richard_S._Sutton

 Episodic and continuing tasks
We refer to a complete sequence of interaction, from start to finish, as an

episode.

Episodes are also called Trajectories or rollouts.

Episodic tasks come to an end whenever the agent reaches a terminal state.
e.g: super mario

Continuing tasks are tasks that continue forever (no terminal state). e.g:
stock trading

48

Episodic tasks have a starting point
and an ending points (a terminal state)

Continuing tasks continue forever (no
terminal state)

 Episodic and continuing tasks

Source: jeuxvideo.com, 2023

Source: droitdunet.fr, 2023

49

 Example of MDP Formulation: Reward

● Reward?

Source: Google Research, 2023

Source: Reinforcement Learning-An Introduction, a book by Richard Sutton

50

https://en.wikipedia.org/wiki/Richard_S._Sutton

 Return
The return Gt is the total discounted reward from time-step t.

 The discount γ ∈ [0, 1] characterizes the “foresightedness” of the agent:

● When this discount rate is close to zero, the agent will care more about the immediate
reward.

● When it is close to 1, the agent will care more about the long term reward.
● Most of the time, is set to something between 0.9 and 0.99:

○ In this case, we look into future rewards, but not too far

51

 Policy
● A policy is the “brain” of tha agent: It is the function that tells us what

action to take given the state we are in. It maps states into action in order
to enable the agent of maximum reward.

● We often denote the parameters of such a policy by 𝛳 :

○ Deterministic policy: is a mapping π: S -> A.
■ At a given state, the policy will always return the same action

○ Stochastic policy: is a mapping

■ π: S x A -> [0,1]
π(a|s) = P(At=a| St = s)

■ The policy outputs a probability distribution over actions

52

▪ Q1: Consider a deterministic policy π: S -> A
where: π(low) = search , π(high) = search
Which of the following statements are true, if
the agent follows the policy?

Policy: Quiz!

If the state is low, the agent chooses action search

If the action is low, the agent chooses state search.

The agent will always search for cans at every time
step.

If the state is high, the agent chooses to wait for
cans.

Source: Reinforcement Learning 101 by Srimanth Tenneti, 2020, Analytics
Vidhya

53

▪ Q2: Consider a different stochastic policy
▪ π: S x A -> [0,1] where: π(recharge∣low)=0.3, π(wait∣low)=0.5,

π(search∣low)=0.2, π(search∣high)=0.6 π(wait∣high)=0.4
Which of the following statements are true, if the agent
follows the policy?

Policy: Quiz!

If the battery level is low, the agent will always decide to wait for
cans.

If the battery level is high, the agent chooses to search for a can
with 60% probability, otherwise waits for a can.

If the battery level is low, the agent is most likely to decide to wait
for cans.

Source: Reinforcement Learning 101 by Srimanth Tenneti,
2020 Analytics Vidhya

54

 Gridworld example
Environment: The world is primarily composed of nine patches of grass. But
two out of the nine locations have large mountains.

States: We will think of each of the nine possible locations in the world as states
of the environment.

Actions: At each point in time the agent can only move up, down, left or right
and can only take actions that lead it to not get off the grid.
The arrows show the possible movements that we are allowed to take.

Goal of the agent: is to get to the bottom right hand corner of the grid as
quickly as possible.

Episode ending condition: the episode finishes when the agent reaches the
goal.

Reward: the agent receives a reward of:
- -1 for most transitions.
- If an action leads the agent to encounter a mountain it receives -3.
- And if it reaches the goal state it gets a reward of 5 and the episode ends.

Source: Deep Reinforcement learning nanodegree program, Udacity 2022

55

 Gridworld example

Source: Deep Reinforcement learning nanodegree program, Udacity 2022

56

 Gridworld example

Source: Deep Reinforcement learning nanodegree program, Udacity 2022

57

 Gridworld example

Source: Deep Reinforcement learning nanodegree program, Udacity 2022

58

 Gridworld example

For each state, the state-value function yields
the expected return, if the agent started in

that state, and then followed the policy for all
time steps.

Source: Deep Reinforcement learning nanodegree program, Udacity 2022

59

Value functions

The value function is the sum of the rewards the agent is expected to
accumulate starting from the current state given a policy π. It evaluates the
quality of the states. The state that will be chosen by the agent will be the
state with the maximum value function. It is presented by the following
equation:

For each state s

 It yields the expected return

 if the agent starts in state s

and then uses the policy
60

▪ Q1: Which of the following statements are
correct:

Value function: Quiz!

The value of a state may differ depending on the policy that
is being followed by the agent

The value of a state depends on the initial state only
regardless of the policy being followed

Given a policy, the value function maps the states to the
expected returns

If 𝛾=1, the the value function maps the states to the
expected immediate reward

s=3

s=1
s=2

r = 1

r = 2

end

end

61

▪ Q1: Which of the following statements are
correct:

Value function: Quiz!

✖

The value of a state may differ depending on the policy that
is being followed by the agent

The value of a state depends on the initial state only
regardless of the policy being followed

✖Given a policy, the value function maps the states to the
expected returns

If 𝛾=1, the the value function maps the states to the
expected immediate reward

s=3

s=1
s=2

r = 1

r = 2

end

end

62

Value functions

An important observation is that the value of a state is not dependent on the immediate rewards
only, but it considers the long term rewards (optionally discounted)

If you have the false impression that we should always take the action with the highest immediate
rewards, then have a look at the following example:

s=3

s=1 s=2

r = 1

r = 2

end

s=4

end

r = - 20

Following the states with
maximum immediate
reward could lead to a trap!

start

Source: iStockPhoto.com, 2023

63

 Gridworld example

(-1)+(-1)+(-1)+(-3)+(-1)+(-1)+(-3)+5 = -6
 (-1)+(-1)+(-3)+(-1)+(-1)+(-3)+5 = -5
 (-1)+(-3)+(-1)+(-1)+(-3)+5 = -4
 (-3)+(-1)+(-1)+(-3)+5 = -3
 (-1)+(-1)+(-3)+5 = 0

(-1)+(-3)+5 = 1
(-3)+5 = 2

5 = 5

(Supposeno discount 𝛾 =1)

Source: Deep Reinforcement learning nanodegree program, Udacity 2022

64

 Gridworld example

V(st) = (-1)+(-3)+5 = (-1) +V(st+1) = (-1) +(2) = 1

⇒ The value of any state can be expressed as the sum of
the immediate reward and the discounted value of the
state that follows.

(Suppose no discount 𝛾 =1)
Source: Deep Reinforcement learning nanodegree program, Udacity 2022

65

 Bellman expectation equation
All bellman equations attest the fact that value functions satisfy recursive
relationships.
The state value function can be decomposed into immediate reward plus
discounted value of successor state.

The value of any state =

the immediate reward + the discounted

value of state that follows following the policy

66

▪ Q1: The policy given by: π(s1) = right , π(s2) =
right, π(s3) = down, π(s4) = up, π(s5) = right,
π(s6) = down, π(s7) = right, π(s8) = right
Assume 𝛾 =1. What is v(s1)?

Value function: Quiz!

 -1

0

1

2 Source: Deep Reinforcement learning nanodegree program, Udacity 2022

67

▪ Q1: The policy given by: π(s1) = right , π(s2) =
right, π(s3) = down, π(s4) = up, π(s5) = right,
π(s6) = down, π(s7) = right, π(s8) = right
Assume 𝛾 =1. What is v(s4)?

Value function: Quiz!

 -1

0

1

2 Source: Deep Reinforcement learning nanodegree program, Udacity 2022

68

▪ Q3: Select the statements that are true:

Value function: Quiz!

 v(s6) = -1 + v(s5)

v(s7) = -3 + v(s8)

v(s1) = -1 + v(s2)

v(s4) = -3 + v(s7)

v(s8) = -3 + v(s5)
Source: Deep Reinforcement learning nanodegree program, Udacity 2022

69

 What’s being optimal
● When is a RL problem solved?

○ When we find a policy π that achieves a lot of reward
over the long run → it’s not about maximizing the
immediate rewards

● What can help us in solving this optimality problem is the
findings of the mathematician Bellman and, in particular, it’s
his famous Bellman equation. We’ll see this in more details
later on.

● As we are looking for the optimal policy for making decisions,
we need a criteria that allows us to order policies or give a
rank for each one.
○ Value functions define a partial ordering over policies

“In the first place I was interested
in planning, in decision making, in
thinking. But planning is not a good
word for various reasons. I decided
therefore to use the word,
"programming." I wanted to get
across the idea that this was
dynamic, this was multistage, this
was time-varying-”

Richard Ernest Bellman
(August 26, 1920 – March 19, 1984)

Source: Wikipedia, 2023

70

 What’s being optimal
A policy π is defined to be better than or equal to another policy π’ if its expected
return is greater than or equal to that of the other policy π for all states.

More formally,

Source: Deep Reinforcement learning nanodegree program, Udacity 2022 71

 What’s being optimal
Note: It is often possible to find two policies that cannot be compared.

There may be more than one optimal policy, we denote the optimal policies by π*
It is guaranteed to exist but may not be unique ⇒ It’s the solution to the MDP.

They share the same state-value function, denoted v*:

72

▪ Q1: Select the statements that are true
(assume ૪=1):

Ordering Policies: Quiz!

𝝅1 >= 𝝅2 and 𝝅3 >= 𝝅2

𝝅2 >= 𝝅1 and 𝝅2 >= 𝝅3

𝝅1 >= 𝝅3 and 𝝅3 >= 𝝅4

𝝅4 >= 𝝅2

𝝅2 >= 𝝅4

s=3

s=1 s=2

r = 1

r = 2

end

s=4

end

r = - 20

𝝅1: agent always goes right
𝝅2: agent always goes down
𝝅3: agent goes right with a probability of 0.5 and
down with a probability of 0.5
𝝅4: agent goes right in 10% of cases and in 90% of
cases executes the “down” action

start

73

Action-Value functions

The action-value function of a state s and action a under a policy π,
denoted by qπ(s,a) , is the expected return when starting in the state,
taking the action and following the policy thereafter.

For each state s and action a
it yields the expected return

 if the agent starts in state s
and takes action a

 and then uses the policy to choose its actions for
all time steps

74

Action-Value functions

75

Action-Value functions

Source: Deep Reinforcement learning nanodegree program, Udacity 2022
76

What is being Optimal
By interacting with the environment the agent estimates the optimal action-value function

We obtain q* π*

From that estimation, it can quickly obtain an optimal policy π∗ . For each
state, we pick the action that yields the highest expected return.

Source: Deep Reinforcement learning nanodegree program, Udacity 2022
Source: Deep Reinforcement learning nanodegree program, Udacity 2022

77

What is being Optimal
Optimal policies also share the same optimal action-value function, denoted q*

78

 Taxonomy of RL algos04

79

 Taxonomy of RL algorithms
All the methods in RL can be classified into various aspects:

● Model-free or model-based
● Value-based or policy-based
● On-policy or off-policy

80

 Model-free and Model-based RL
Model: A model predicts what the environment will do next. The term model refers to
the transition function and the reward function

● Transitions: P predicts the next state (i.e., system dynamics)

P(s, a, s’)=|P(st+1=s’ | st=s, at=a)

● Rewards: R predicts the next immediate reward (e.g., rt+1 = |E(Rt+1 | st=s, at=a))

Model-based: The agent either has the model or tries to build an explicit
representation of the environment based on its interactions with the environment

Model-free: The agent does not build a model of the environment. Instead, the agent
uses the interactions with the environment to find out a policy and/or value function.

81

 Value-Based and Policy-Based learning
● Policy-based

○ policy
○ No value function

● Value-based
○ No policy (implicit)
○ A value function

● Actor critic
○ policy
○ value function

82

 Value-Based and Policy-Based learning

Value-Based Learning
The agent optimize the value function,
that it uses to select the action to take
at each step, e.g. the action with the

highest value estimate

Policy-Based Learning
The agent optimizes its policy right

away without passing through a value
function. The agent takes the action

with the highest probability.

83

 On-Policy and Off-Policy
This affects how training iterations make use of data.

● On-Policy: it learns on the policy—that is, training can only utilize data
generated from the current policy π. This implies that as training iterates through
versions of policies, π 1 , π 2 , π 3 , . . ., each training iteration only uses the current
policy at that time to generate training data. As a result, all the data must be
discarded after training, since it becomes unusable.

● Off-Policy: Any data collected can be reused in training.

84

 Taxonomy of RL algorithms

85

86

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

Course #2

Value Based methods

 Value-Based learning
Recall that value-based methods: Train a value function to learn which state is more valuable and
use this value function to take the action that leads to it.

How can the agent consolidate his experience to learn this value function?
- The agent interacts with the environment and collects trajectories. The accumulated

experience can be used to learn the value function.

The agent needs more episodes to collect better informed decisions and truly understand the
environment.
● The agent hasn’t attempted each action from each state.
● The environment dynamics are stochastic.

Source: Deep Reinforcement learning nanodegree program, Udacity 2022
87

 Tabular Q-learning01

88

 Q-learning: Big picture
 Q-Learning is an off-policy value-based method that uses Bellman equation as a
basis to train its action-value function.

Q-Learning is the algorithm we use to train our Q-function, an action-value function
that determines the value of being at a particular state and taking a specific action at
that state.

Q-function is encoded by a Q-table, a table where each cell corresponds to a
state-action pair value

Source: Deep Reinforcement learning nanodegree program, Udacity 2022 89

 Q-learning: The link between values and policy
 Question: How can we find the optimal policy once we have this Q-table (or the value
of each state-action pair)?

Note that whenever the value of each state-action pair is known, the optimal action can be
determined from the following equation:

In other words, if we have an optimal Q-function, we have an optimal policy since we know
the best action to take at each state.

90

 Q-learning: estimating Q values
 Question: How can we fill in this Q-table so that it includes the values of each
state-action pair?
We want to find the Q values without the need for prior knowledge of environment dynamics
(model-free RL), and, instead, leverage our interactions with the environment for determining
the value of each state-action pair.

If, for every action, the reward and the next state can be observed, one trick is to use the
following update rule which is based on Bellman equation:

For each interaction with the environment, we update the Q value based on
the equation above. Then, after a large number of interactions with the
environment, the action values Q will converge to the true Q values. 91

 Q-learning: The Exploration-exploitation tradeoff
 Before giving an example on how to use Q-learning, note that In the beginning, our Q-table
is useless since it gives arbitrary values for each state-action pair (most of the time, we
initialize the Q-table to 0). The agent must therefore continually explore its environment by
attempting different states and actions and observing its obtained reward.

By only exploring his environment, the agent risks to end in the bad state. At some point, the
agent needs to start taking advantage of what it has learned so far. As the agent explores the
environment and we update the Q-table, it will give us a better and better approximation to
the optimal policy. This is one of challenges of RL: finding the right balance between
exploration and exploitation.

92

 Q-learning: The Exploration-exploitation tradeoff

Exploration
Try different random actions in

order to discover more
information about the

environment

Exploitation
use known information to

maximize reward

93

 Q-learning: The Exploration-exploitation tradeoff

At each step, the agent has two choices. He should either act greedily (take the best
action based on the known information), or to try to find more information about the
environment in order to improve his knowledge and to discover a way to obtain better
rewards in the future.

Source: Hugging Face Deep RL Course 2018 94

Epsilon greedy policy

Exploration can be achieved using an epsilon-greedy policy. This policy consists of
choosing the action among the possible ones with the highest Q value with 1-𝝐,
probability, or to explore the environment by choosing it randomly with 𝝐,.

 → It’s common to start with a high 𝝐 and to reduce its value as your policy goes through
more iterations.

95

 Q-learning Example
● The reward is non-zero in two cases:

Transition to the Goal (G) state has a +100
reward, while moving into the Hole (H) state
has a -100 reward. These two states are
terminal states and constitute the end of
one episode from

● The agent assumes a policy that selects a
random action 90% of the time and exploIts
the Q-table 10% of the time.

● ℽ=0.9

Source: Gulli, A., Kapoor, A., & Pal, S. (2019). Deep learning with TensorFlow 2 and Keras,. Packt
Publishing Ltd.

96

 Q-learning Example
We initialize the Q-table

Since the agent has not
learned anything yet about its
environment, the Q-table has
zero initial values.

Source: Gulli, A., Kapoor, A., & Pal, S. (2019). Deep learning with
TensorFlow 2 and Keras,. Packt Publishing Ltd.

97

 Q-learning Example
EPISODE#1:
Suppose: action#1 is
randomly selected and
indicates a move to the right

Source: Gulli, A., Kapoor, A., & Pal, S. (2019). Deep learning with
TensorFlow 2 and Keras,. Packt Publishing Ltd.

98

 Q-learning Example
EPISODE#1:
Suppose: action#2 is
randomly selected and
indicates a move in
downward direction

Source: Gulli, A., Kapoor, A., & Pal, S. (2019). Deep learning with
TensorFlow 2 and Keras,. Packt Publishing Ltd.

99

 Q-learning Example
EPISODE#1:
Suppose: action#3 is randomly
selected and indicates a move to
the right

It encountered the H state and
received a -100 reward. The episode
has just finished, and the agent
returns to the Start state.

Source: Gulli, A., Kapoor, A., & Pal, S. (2019). Deep learning with
TensorFlow 2 and Keras,. Packt Publishing Ltd.

100

 Q-learning Example
EPISODE#2:
Suppose: The random actions
chosen by the agent are two
successive moves to the right

Source: Gulli, A., Kapoor, A., & Pal, S. (2019). Deep learning
with TensorFlow 2 and Keras,. Packt Publishing Ltd.

101

 Q-learning Example
EPISODE#3:
The first random action taken
by the agent is a move to the
right.

The Q value of state (0, 0) is
now updated with a non-zero
value. It is like giving credit to
the earlier states that helped
in finding the G state.

Source: Gulli, A., Kapoor, A., & Pal, S. (2019). Deep learning
with TensorFlow 2 and Keras,. Packt Publishing Ltd.

102

 Q-learning Example
EPISODE#4:
For this episode, suppose the
agent decides to exploit the
Q-table instead of randomly
exploring the environment.

The Q-table suggests moving to
the right for both states, which
allows reaching the G state.

Source: Gulli, A., Kapoor, A., & Pal, S. (2019). Deep learning
with TensorFlow 2 and Keras,. Packt Publishing Ltd.

103

 Q-learning Example
If the Q-learning algorithm continues to run indefinitely, the Q-table will converge.

104

 Tabular Q-learning algorithm
1- Start with an empty table Q(s,a)

2- By interacting with the environment, obtain the tuple (s, a, r, s’).

3- Update the Q(s,a) table using the Bellman approximation:

4- Repeat from step 2 until convergence

Note: For step 2, there is no single way for selecting the action. As such, the
exploration-exploitation trade-off should be taken into account when selecting
actions..

105

Q-learning: The “blended” update rule
We have been using the following Bellman approximation for updating the Q-table.

As we take samples from the environment, it’s generally a bad idea to assign new values on top of
existing values, as training can become unstable. What is usually done in practice is updating the
Q-table using a “blending” technique, which is simply averaging between old and new values of Q
using a learning rate 𝛼∊[0, 1]

This allows values of Q to converge smoothly , even if our environment is noisy.

106

 Tabular Q-learning: Final version
1- Start with an empty table Q(s,a)

2- By interacting with the environment, obtain the tuple (s, a, r, s’).

3- Update the Q(s,a) table using the “blended” Bellman approximation:

4- Repeat from step 2 until convergence

107

 Tabular Q-learning: pseudocode

Source: Reinforcement Learning 101 by Srimanth Tenneti, 2020, Analytics Vidhya

108

 Tabular Q-learning: on-policy or off-policy?
Recall:

● On-policy: using the same policy for acting and updating.

● Off-policy: using a different policy for acting (inference) and updating (training).

In Q-learning: We are using the epsilon-greedy policy for acting (acting policy):

This acting policy is different from the greedy policy that is used to select the best next-state
action value to update our Q-value (updating policy).

This is why we say that Q Learning is an off-policy algorithm.

109

 On-policy value-based learning: Sarsa

With Sarsa, another
value-based
algorithm, the
epsilon-greedy policy
selects the next
state-action pair, not
a greedy policy.

Source: Temporal Difference Methods by Xray, 2020, zhuanlan.zhihu

110

 On-policy vs Off-policy value-based learning: Recap
● Off-policy: using a different policy for acting (inference) and updating (training).

● On-policy: using the same policy for acting and updating.

Source: Hugging Face Deep RL Course 2018

Source: Hugging Face Deep RL Course 2018 111

▪ Q1: Consider an agent that has a state made of
two discrete variables. The first variable is in
the set {0, 1, 2, 3} while the second variable is
binary. If the agent has 4 possible actions, how
many states does the agent have?

Tabular Q-learning: Quiz!

 6

 8

 10

 12

112

▪ Q2: Consider an agent that has a state made of two
discrete variables. The first variable is in the set {0, 1,
2, 3} while the second variable is binary. If the agent
has 4 possible actions, what is the dimension of the
q table (rows, columns)?

Tabular Q-learning: Quiz!

 (4, 6)

 (4, 8)

 (6, 4)

 (8, 4)

113

 Deep Q-learning02

114

From Tabular Q-learning → to Deep Q-learning

Using the Q-table to estimate the Q-values is fine for small discrete
environments.

However, when the environment has numerous states or is continuous, as in
most cases, a Q-table is impractical and not feasible.
Example:
- Consider a state made of four continuous variables:

- speed∈[0,1], angle1∈[0,1], angle2∈[0,1], acceleration∈[0,1]

- How many states?
- discretization step of 0.01→ 100 for each state
- Number of states: 100^4=1000000 states !!

Source: An Introduction to Q-Learning,
2022, Datacamp

115

From Tabular Q-learning → to Deep Q-learning

How overcome the Q-table burden?
- Instead of a table, use any function that maps the state and action onto

the Q value
- Most popular solution is to use a deep neural network as a function

approximator to approximate the Q-table: This is known as Deep
Q-learning (see the DQN paper)

 Deep RL= RL + Neural Network

Did you know:
In 2013, DeepMind
published a paper
entitled “Playing Atari
with Deep Reinforcement
Learning” (DQN paper)
that outlined their new
approach to an old
algorithm, which gave
them enough
performance to play six
of seven Atari 2600
games at record levels!

Source: A Hands-On Introduction to Deep Q-Learning using
OpenAI Gym in Python, 2019, Analytics Vidhya

116

https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf

Deep Q-learning

Idea of DQN is to use a neural network with parameters 𝜃, to estimate the Q-values :
Q(s,a; 𝜃)≈Q*(s,a)

Inspired by supervised learning, the deep Q neural network learns to provide reliable estimates of
the Q-values based on the interactions with the environment. The learned Q-function is then
used by an agent to select actions.

Note that DQN is only applicable to environments with discrete action spaces.

- The input is the state
- The prediction is the Q value for each action
- Desirable action: action with the largest Q value

Source: An introduction to Deep Q-Learning by Thomas Simonini, 2018, freeCodeCamp

117

Standard Deep Q-learning

The Q-learning algorithm is then modified as follows:

Zoom on the loss function:

TD error:
difference between target and prediction

y:
This term is usually denoted y and called

TD target (or simply target)

118

▪ Q1: you want to build an RL agent that plays the breakout Atari
game? Knowing that the agent receives raw pixel data as input
(210, 160, 3). The action can take only one of the following
actions: NOOP, FIRE, RIGHT, LEFT. Choosing between tabular
and deep Q-learning, which of the following statements seem
reasonable?

Tabular vs Deep Q-learning: Quiz!

The action space is discrete so tabular Q learning seems fine

The action space is small so deep Q learning seems fine

The state space is small so tabular Q learning seems fine

The state space is large so deep Q learning seems fine
Source: Deep Q-Learning for Atari Breakout by
Jacob Chapman and Mathias Lechner , 2020,
Keras

119

▪ Q1: you want to build an RL agent that plays the breakout Atari
game? Knowing that the agent receives raw pixel data as input
(210, 160, 3). The action can take only one of the following
actions: NOOP, FIRE, RIGHT, LEFT. Choosing between tabular
and deep Q-learning, which of the following statements seem
reasonable?

Tabular vs Deep Q-learning: Quiz!

The action space is discrete so tabular Q learning seems fine

The action space is small so deep Q learning seems fine

The state space is small so tabular Q learning seems fine

✖ The state space is large so deep Q learning seems fine
Source: Deep Q-Learning for Atari Breakout by
Jacob Chapman and Mathias Lechner , 2020,
Keras

120

Standard Deep Q-learning: What could go wrong?

● At each time step, we learn from a tuple (s, a, r, s’) and then throw this experience => our
neural network tends to forget the previous experiences as it overwrites with new
experiences→Risk of forgetting previous experiences and no data efficiency

● It is more efficient to make use of previous experience, by learning with it multiple times.

Source: An introduction to Deep Q-Learning by Thomas Simonini, 2018, freeCodeCamp

121

Standard Deep Q-learning: What could go wrong?

● Another limitation is that the data used for SGD update are highly correlated:
these data samples are very close to each other, as they belong to the same
episode (we know that future states and rewards depend on previous states
and actions)→Need to reduce correlation between experiences

s1,a1,r2 s2,a2,r3 s3,a3,r4 s4,a4,r5 s5,a5,r6 s6,a6,r7 s7,a7,r8

s1,a1,r2 s2,a2,r3 s3,a3,r4

s1,a1,r2 s2,a2,r3 s3,a3,r4 s4,a4,r5

Episode 1

Episode 2

Episode 3

122

Deep Q-learning with Experience Replay

● One solution to overcome the data inefficiency and the highly correlated data
samples: Experience Replay buffer

● If memory is full, the oldest experience is discarded to make space for the
latest one.

The minibatch contains
experiences from different
episodes and different policies.
This has two advantages:
● break the correlations

between samples
● data efficiency by using

each transition in many
updates

123

Deep Q-learning with Experience Replay

Source: Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602.

124

Deep Q-learning: The Instability issue

Recall that the parameters θ of the Q network are updated by performing gradient descent in the
direction that minimizes the loss wrt model parameters θ.

 L(θ)= (Q(s,a;θ) - y)2 with y=r+ 𝛄 maxa’ Q(s’ ,a’;θ)

The TD target is estimated with the same
neural network with parameters θ, whose
parameters are being updated: Instability

we are getting closer to our target but also
moving our target! It’s like chasing our own tail!

Source: presentermedia.com, 2023

125

https://docs.google.com/file/d/1ejur3myrp_RvfpSM4trqA6FMcm9_zUrY/preview

Deep Q-learning: Improving Stability

To alleviate the instability, one trick is to use a snapshot of the network parameters from a few
iterations ago instead of the last iteration for generating the target. This copy is called the
target network (symbolically denoted with a hat).
The update rule for the network weights are modified as follows:

Before (Unstable):

After:

The weights of the target network are updated after every T steps:

computed with θ

computed with θ-

Target-network

126

Deep Q-learning: Connecting the dots!

Putting it all together:

● Initialize replay memory with fixed capacity
● Initialize action-value function q with random weights w
● Initialize target action-value weights w-
● For number of episodes:

Observe state S
Choose action At from state St using policy 𝝅 𝝐 - greedy(q(S,A,w))
Take action At, observe reward Rt+1 and next state St+1

 Store experience tuple(St,At,Rt+1,St+1) in replay memory

Obtain random minibatch of tuples (sj,aj,rj+1,sj+1) from replay memory
Set target yj = rj + 𝛾 maxaQ(sj+1,a,w-)
Update: Δ𝔀 = 𝛼 (yj - Q(sj,aj,𝔀)) ∇w Q(sj,aj,𝔀)
Every C steps, reset w- w

127

Deep Q-learning: Connecting the dots!

Source: Deep Q-network (DQN)-II, by Jordi Torres, 2020, Towards Data Science
128

Deep Q-learning: Soft updates
● When the weights of the Q network are allocated entirely to the target network after T time steps, this is called hard

updates:
After T time steps:

● When T is relatively large, which is usually the case (in the order of thousands of steps), learning can be slowed down
significantly. This is because any change in the Q function is propagated only after the target network update (i.e., after
T time steps). These “jumpy” updates could also result in learning instability.

● To remediate this, soft-updates can be applied instead. The idea is to apply smoother weight updates to the target
network instead of periodical integral update (𝜏<1):

Source: Udacity Deep RL project 1, Gregor, 2018, wpumacay

129

 Gymnasium library03

130

 Gymnasium library
Gymnasium is a project that provides an API for all single agent reinforcement learning
environments, and includes implementations of common environments: cartpole, pendulum,
mountain-car, mujoco, atari, and more.
The API contains four key functions: make, reset, step and render, that this basic usage will
introduce you to.

Source: Create your first OpenAI Gym environment, by Savia Lobo, 2018, Packt Hub
131

The environment is represented in Gymnasium by the Env class, which has the
following members:

● reset(): This resets the environment to its initial state, returning the initial
observation.

● step(): allows the agent to take an action in the environment. In gymnasium, if the
environment has terminated, this is returned by step. Similarly, we may also want
the environment to end after a fixed number of timesteps, in this case, the
environment issues a truncated signal. If either of terminated or truncated are true
then reset should be called next to restart the environment.

● render(): This method allows to visualize the agent in action.

 Gymnasium library

132

The environment contains also:

● action_space: This is the field of the Space class, providing a specification
for allowed actions in the environment. It can be discrete, continuous or a
combination of both.

● observation_space : This field has the same Space class, but specifies the
observations provided by the environment. It can be discrete much like action spaces.

 Gymnasium library

133

 DQN improvements04

134

DQN Improvements

● Dueling DQN :
Paper: https://arxiv.org/abs/1511.06581

 Q(s,a) = V(s) + A(s,a)
Network will have two separate paths for value of state distribution and advantage distribution. On the output,
both paths will be summed together, providing the final value probability distributions for actions. V(s): the value of
being at that state
A(s,a): the advantage of taking that action at that state (how much better is to take this action versus all other
possible actions at that state).

135

DQN Improvements

● Dueling DQN:

By decoupling the estimation, intuitively our DDQN can learn which states are (or are not) valuable without
having to learn the effect of each action at each state (since it’s also calculating V(s)).

This is particularly useful for states where their actions do not affect the environment in a relevant way.

Source: Improvements in Deep Q Learning: Dueling Double DQN, Prioritized Experience Replay, and fixed…, by Thomas Simonini, 2018, FreeCodeCamp

136

https://www.freecodecamp.org/news/improvements-in-deep-q-learning-dueling-double-dqn-prioritized-experience-replay-and-fixed-58b130cc5682/

DQN Improvements

● Dueling DQN :
Paper: https://arxiv.org/abs/1511.06581

 Q(s,a) = V(s) + A(s,a)

Source: Improvements in Deep Q Learning: Dueling Double DQN, Prioritized Experience Replay, and fixed…, by Thomas Simonini, 2018, FreeCodeCamp

137

https://www.freecodecamp.org/news/improvements-in-deep-q-learning-dueling-double-dqn-prioritized-experience-replay-and-fixed-58b130cc5682/

DQN Improvements

● Double DQN:

Paper: https://arxiv.org/abs/1509.06461
Problem addressed: Deep Q-Learning tends to overestimate action values.
⇒ Harmful to training performance.
⇒ Can lead to suboptimal policies.
Especially in early stages

Basic TD target:
Q(s,a) = r + 𝛾 maxa’ Q’(s’,a’)

Proposed TD target:

Choosing actions for the next state with the actual network but taking values of Q from target network
Q(s,a) = r + 𝛾 maxa’ Q’(s’, argmax Q(st+1,a))

138

https://www.ri.cmu.edu/pub_files/pub1/thrun_sebastian_1993_1/thrun_sebastian_1993_1.pdf

DQN Improvements

● Double DQN:

Paper: https://arxiv.org/abs/1509.06461
Problem addressed: Deep Q-Learning tends to overestimate action values.
Remember how we calculate the TD target

If the max q value contain any errors, then it will be positively biased and the resulting Q-values will be
overestimated. We are not sure that the chosen action is the best action because:

● An agent may not fully explore the environment
● The environment may be noisy

Q target
reward of taking that
action at that state

max q value among all possible
actions from next state

139

https://www.ri.cmu.edu/pub_files/pub1/thrun_sebastian_1993_1/thrun_sebastian_1993_1.pdf

DQN Improvements

● Double DQN:

Overestimation in the face of uncertainty can be useful, e.g: at the beginning of training it can be helpful to
overestimate Q π (s, a) for unvisited or rarely visited (s, a) pairs because this increases the likelihood that
these states will be visited, allowing an agent to gain experience about how good or bad they are.

However, DQN overestimates Q π (s, a) for the (s, a) pairs that have been visited often.
This becomes a problem if an agent does not explore (s, a) uniformly. Then the
overestimation of Q π (s, a) will also be nonuniform and this may incorrectly change the
rank of actions as measured by Q π (s, a). Under these circumstances, the a an agent thinks
is best in s is in fact not the best action to take.

Solution: when we compute the Q target, we use two networks to decouple the action selection from the target
Q value generation.

● use our DQN network to select what is the best action to take for the next state (the action with the
highest Q value).

● use our target network to calculate the target Q value of taking that action at the next state.

I 140

DQN Improvements

● Noisy networks:
Paper: https://arxiv.org/pdf/1706.10295.pdf
Problem addressed: exploration of the environment.

Independent Gaussian noise: random value drawn from normal distribution
Factorized Gaussian noise: keeping only two random vectors: one with the size of input and another with size of
the output of the layer.

141

https://arxiv.org/pdf/1706.10295.pdf

 General advices05

142

How do I frame my task in RL

● Follow the MDP formalism.
● Start with simplified version of your task until you see signs of life.
● Simplify the feature space. Once it starts working, make the task harder until you solve the full

task.
● Simplify the reward function. Formulate so it can give you FAST feedback to know whether you're

doing the right thing or not.

143

How can I diagnose my RL agent behaviour?
⇒ Sanity checks

● Sensitivity to the change in EVERY hyper parameter is considered as bad sign ⇒ non robustness.

● Look at the episode return min/max/stdev/mean, max is important not just mean

● Look at the episode length (sometimes more informative than return.

● Health indicators differ from one class of algorithm to another. Policy gradients VS Q-learning

144

How can I diagnose my RL agent behaviour
Q-learnings

● Metrics:
○ How to measure if your agent is converging to some locally optimal policy ⇒ epsilon-greedy

■ ⇒ Epsilon schedules are important

○ Learning rate schedule are helpful. This should be decreasing over time.

○ TD-error is decreasing

○ The action-values estimates should increase as the cumulative reward increases.

145

How do I evaluate my RL agent

● Use a separate test environment to evaluate the performance of your agent at a given time.

● Evaluate your agent for n test episodes and and average the reward per episode to have a good
estimate. (n between 5 and 20)

146

147

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

Course #3

Policy Based methods

Recall: Values and policy

Recall: The ultimate goal of an RL agent is to find a policy π that achieves a lot of reward over the long
run. We find this policy through training. To train the agent,

Value-Based Learning
Teach the agent to learn which state is more valuable and

then take the actions that leads to the more valuable states

Policy-Based Learning
The agent learns a policy function directly without passing through
a value function. The agent learns which action to take, given the

state is in.

Source: Hugging Face Deep RL Course 2018 Source: Hugging Face Deep RL Course 2018
148

Policy representation

- Recall that in Q-learning, the Q function was parameterized by a neural network that returns the
values of actions as scalars. These values then dictate to us how to behave as we select the action
with the largest value.

- In policy-based methods, we learn a policy function directly by parameterizing it:

- Learning the policy means that we are going to look for the parameters 𝜃 that maximize a certain

objective function J(𝜃), which is a performance measure with respect to parameter 𝜃.

𝜋(at|st) → 𝜋(at|st; 𝜃)

149

Policy representation: Deterministic Policies

● Deterministic Policy:
 π : s ⟶ a

Instead of sampling from the action probabilities, the agent need only choose the greedy action.
The last layer of the neural network representing the policy is the action to be taken.

150

Policy representation: Stochastic Policies

● Stochastic Policy:
○ Categorical policies:

𝜋(ai|st; 𝜃)= P[at|st]=softmax(ai)
ai =maxi 𝜋(ai|st; 𝜃)

The agent passes the current environment state as input to the network, which returns action
probabilities. Then, the agent samples from those probabilities to select an action.

Example: Atari game

Source: modified from Qu, X., Sun, Z., Ong, Y. S., Gupta, A., & Wei, P. (2020). Minimalistic attacks: How little it takes to fool deep reinforcement learning policies. IEEE
Transactions on Cognitive and Developmental Systems, 13(4), 806-817.

151

Policy representation: Stochastic Policies

● Stochastic Policy:
○ Gaussian policies: used mostly with continuous action spaces. The policy is a sample from a

Gaussian distribution.
𝜋(ai|st; 𝜃)∼ N (μ(st), 𝞂2(st))

The mean μ and standard deviation of the normal distribution are both functions of the state
features.

152

The neural network that approximates the policy takes the
environment state as input. The output layer returns the
probability that the agent should select each possible
action. Which of the following is a valid activation function
for the output layer??

A: linear (i.e; no activation function)

B: Softmax

C: ReLu

Quiz!

153

For continuous action spaces, the neural network has one node for
each action entry (or index). For example, consider the action
space of the bipedal walker environment, shown in the figure
below.

Quiz!

154

https://github.com/openai/gym/wiki/BipedalWalker-v2

→ In this case, any action is a vector of four numbers, so the output
layer of the policy network will have four nodes.

→ Every entry in the action must be a number between -1 and 1

Which of the following describes a valid output layer for the
policy?

A: output layer with ReLu activation function.

B: output layer with softmax activation function

C: output layer with tanh activation function

Quiz!

155

Why policies may be more attractive than values?

- Simplicity: The policy is all what we are looking for when we are solving a RL problem. Therefore,
whenever the agent is in a given state, it is more straightforward to use the policy directly to decide
its next move instead of computing and/or storing the value of a state or action and then select the
action that maximizes these values as in value-based methods. Doing this extra work of computing
the Q or V values could be tedious especially for large action spaces. Why do the extra work?

Policy-based
learning

Value-based
learning

Source: Introduction to Reinforcement learning policy gradient, 2020, PyLessons 156

Why policies may be more attractive than values?

- Stochastic policies: An extra benefit of policy-based methods is that they can learn a stochastic
policy while value functions can’t. One advantage of a stochastic policy is that it can capture the
uncertainty/stochasticity of the environment. With a stochastic policy, the same state could lead to
different actions (it is possible to have more than one action to choose from in a certain situation).

- For example: In a poker game, the agent may not take the same action in response to the same
hand since the probability of winning or losing depends on the opponent’s hand and how the
betting has proceeded.

Source: PokerListings, 2023 157

Why policies may be more attractive than values?

- High dimensional or continuous action spaces: In Q-learning for example, to be able to decide
on the best action to take having Q(s,a) we need to solve a small optimization problem finding a,
which maximizes Q(s,a). In the case of Atari with several discrete actions this wasn’t a problem: we
just approximated values of all actions and took the action with the largest Q.
But, if we have a large number of possible actions or an infinite possibility of actions? This
optimization problem becomes hard as Q is usually represented by nonlinear NN, so finding the
argument that maximizes the function’s values can be tricky. In such cases, it’s more feasible to
avoid values and work with the policy directly.

For a self-driving car,, you can have a near
infinite choice of actions (it can turn left by
turning the wheel at 15°, 17.2°, 20°, 21,1°,
21,2°, honk, turn right at 20°, etc…)

Source: Hugging Face Deep RL Course 2018
158

 Policy gradients
methods01

159

Policy gradients: A subclass of policy-based methods

Policy gradient methods are a subclass of policy-based methods that estimate the weights of a
policy through gradient-ascent.

In Policy-gradient methods, we optimize the parameter 𝜃 directly by performing gradient ascent

on the objective function J(𝜃), which is the performance measure.

Note that there are other classes of policy-based methods where we optimize the parameter 𝜃
indirectly by maximizing the local approximation of the objective function with techniques like hill
climbing, simulated annealing or evolution strategies.

160

Policy gradients: Big picture

We just learned that policy-gradient methods aim to find parameters θ that maximize the expected return.
Question: How we’re going to change our network parameters using the expected return to improve the

policy?

Answer: The idea is that we’re going to let the agent interact during an episode. And if we win the episode,
⇒ We can change the network weights a bit to make it more likely to select the actions it selected while in those
states in the future.

If the agent has lost the game, we update the network weights so that it is less likely to repeat these
decisions in the future.

So, eventually, for each state-action pair, we want to increase the P(a∣s): the probability of taking that action
at that state. Or decrease if we lost.

Source: Deep Reinforcement learning nanodegree program, Udacity 2022 161

Policy gradients: Big picture

The Policy-gradient algorithm (simplified) looks like this:

In policy-based methods, the optimization is most of the time on-policy since for each update, we
only use data (trajectories) collected by our most recent version of πθ

.

162

Policy gradients: More formally

Trajectory: sequence of states and actions.

𝞽 = s0, a0, s1, a1, .., sH, aH

A trajectory could correspond to a full episode or a part of the episode.

Horizon is the length of a trajectory, denoted by H.

R(𝞽) is the sum of discounted rewards from that trajectory.

R(𝞽) = r1+𝜸 r2,𝜸2 r3, .., 𝜸H-1rH

163

Policy gradients: More formally

Policy-gradient is an optimization problem: we want to find the parameters θ that maximize
our objective function J(θ). So, we need to use gradient-ascent. Our step for gradient ascent is:

 ɑ is the step size that is generally allowed to decay over time. We can repeatedly apply this
update rule in the hopes that θ converges to the value that maximize J(θ).

164

▪ Q1: Why do we use gradient ascent instead of
gradient descent to optimize J(θ)?

Policy gradient: Quiz!

We want to minimize J(θ) and gradient ascent gives us
the gives the direction of the steepest increase of J(θ)

We want to maximize J(θ) and gradient ascent gives us
the gives the direction of the steepest increase of J(θ)

165

Policy gradients: More formally

Objective Function: gives us the performance of the agent given a trajectory and it outputs the
expected return (called also expected cumulative reward).

166

Policy gradients: More formally

Objective Function: gives us the performance of the agent given a trajectory and it outputs the
expected return (called also expected cumulative reward).

● The expected return can be calculated as a weighted average as follows:

167

Policy gradients: More formally

If we develop further the definition of the objective function provided earlier, the objective function can
be expressed in terms of the policy as follows:

There are two problems with using the expression above for computing the derivative of J(θ)

-Problem 1: We can’t calculate the “true” gradient of J(θ) as it involves calculating the probability of
each possible trajectory→ computationally expensive. Instead, we would rather use sample-based
estimate based on the experience collected from some trajectories.

- Problem 2: The expression above involves the knowledge of state distribution (i.e., environment
dynamics). But, this may not be known especially if our focus is on model-free reinforcement learning.

168

Policy gradients: More formally
How overcome these two problems and find an estimate of the gradient of the objective
function?

Good news: Policy gradient theorem!

This theorem will help us in deriving a differentiable expression for the objective function that does not
involve the use of the state distribution. The policy gradient theorem states that:

For any differentiable policy and for any policy objective function, the policy gradient is:

Source: Hugging Face Deep RL Course 2018

169

Policy gradients: REINFORCE

Source: Reinforcement Learning-An Introduction, a book by Richard Sutton

1
2
3
4
5

170

https://en.wikipedia.org/wiki/Richard_S._Sutton

Policy gradients: REINFORCE

More into the gradient of the objective function:

The gradient is equal to the gradient of the log-probability of the action taken and it is scaled by the return :
- If return R(𝜏) is high: it will push up the probabilities of the state-action combinations
- otherwise, it will push down the probabilities of the state-action combinations

⇒ In other words, we are trying to increase the probability of the actions that have given us
good total reward and decrease the probability of actions with bad final outcomes.

171

Policy gradients: REINFORCE

Difference from Q-learning:

● No explicit exploration is needed.
● In Q-learning: epsilon-greedy strategy. Now, with probabilities returned by the network, the

exploration is performed automatically. In the beginning, the network is initialized with random
weights and the network returns uniform probability distribution. THis distribution corresponds to
random agent behaviour.

● No replay buffer is used. PG belong to the on-policy methods class. We can’t train on data obtained
by an old policy.

● NO target network is needed.

172

Policy gradients: REINFORCE limitations

● The update process is very inefficient. We run the policy once, update once, and then throw away
the trajectory.

● Correlation between samples: training samples in a single episode are usually highly correlated,
which is bad for SGD training. For DQN, this was solved by considering a replay buffer. But, this
solution is not applicable to the policy gradient family because these methods are on-policy. To
solve this, the idea is, instead of communicating with one environment, we use several parallel
environments and use their transitions as training data.

● Local optimum and exploration issues: Even with the policy represented as a probability
distribution, there is a risk that the agent converges to some local optimal policy and stops
exploring the environment. In DQN, this was solved by epsilon-greedy action selection. In
policy-gradient methods, one solution for this is the use of entropy bonus.

173

Policy gradients: The Entropy Bonus

To prevent the agent from being stuck in a local optimum, we first compute the entropy of the policy:

The entropy is a measure of uncertainty. It is positive and high when all actions have the same
probability. The entropy become minimal if the agent has 1 probability for one action and 0 for all
others (i.e., when the agent is 100% sure about an action)

Once the entropy is computed, it is then subtracted from the loss function in order to punish the agent
for being too certain about the action to take. Note that the loss function is simply the negative of the
objective function.

⇒ this introduces new hyperparameter called entropy_beta. It is the scale of the entropy bonus in the
loss function expression.

174

Policy gradients: REINFORCE limitations

● High gradients variance: The gradient formula is proportional to the discounted reward while the
range of this reward is heavily dependent on the environment.

For example, in the cartpole, if the pole is held for 5 steps, the reward (undiscounted) is five. But, if
we hold it for 100 steps, the total reward is 100. So, there is a large difference between these two
scenarios. We need to do something about this, otherwise the training could become unstable.

The simplest way for handling this is to subtract a value called baseline B(st) from the return. This
baseline B(st) can be any function as long as it does not depend on the action. Some possible choices
of the baseline are:

■ A constant value, which is normally the mean of the discounted rewards
■ The moving average of the discounted reward
■ The value of the state V(s)

175

Policy gradients: REINFORCE with baseline

Source: Reinforcement Learning-An Introduction, a book by Richard Sutton

176

https://en.wikipedia.org/wiki/Richard_S._Sutton

Learning material

● Reinforcement Learning-An Introduction, a book by Richard Sutton and his doctoral advisor
Andrew Barto. An online draft of the book is available here

● Teaching material from David Silver including video lectures is a great introductory course on RL
● Technical tutorial on RL by Pieter Abbeel and John Schulman (Open AI/ Berkeley AI Research Lab).
● Reinforcement learning hands-on (Second edition), a book with tutorials by Maxim lapan.
● Huggingface deep RL course
● Deep Reinforcement Learning nanodegree on Udacity.
● Andrej Karpathy’s Deep Reinforcement Learning: Pong from Pixels is a great introduction to build

motivation and intuition.

177

https://en.wikipedia.org/wiki/Richard_S._Sutton
https://en.wikipedia.org/wiki/Andrew_Barto
http://incompleteideas.net/book/the-book-2nd.html
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.htm
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.htm
http://people.eecs.berkeley.edu/~pabbeel/nips-tutorial-policy-optimization-Schulman-Abbeel.pdf
https://github.com/PacktPublishing/Deep-Reinforcement-Learning-Hands-On
https://www.udacity.com/course/deep-reinforcement-learning-nanodegree--nd893
http://karpathy.github.io/2016/05/31/rl/

THANK YOU!

17/02/2025…….

178

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

