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Who this course is for

The main target audience are should have some knowledge in Machine Learning, but interested 
to get a practical understanding of the Reinforcement Learning domain. The attendee should be 
familiar with Python and the basics of deep learning and machine learning. 
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What this course covers

Introduction to RL and main formal models. 
Aspect of practical RL using open-source library gym.
Value based methods
Policy based methods 
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What is Reinforcement 
Learning?



Machine 
learning 

paradigms01

-----------------------------------------------------------------------------------------------

6



Machine learning paradigms

Machine learning

Reinforcement 
Learning

Supervised 
Learning

Unsupervised 
Learning
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Supervised learning
Data: (X,Y)
● X is i.i.d sampled data, 
● Y is label 

Goal: build a function that maps some 
input into some output X-> Y, when
given a set of example pairs. 

Applications
● Text classification
● Image classification and object location
● Regression problems
● Sentiment analysis

Source: Supervised vs. Unsupervised learning, by Devin Soni, 2018, Towards 
Data Science

Source: Supervised vs. Unsupervised learning in 3 Minutes, by Alan Jeffares, 2018, Towards 
Data Science
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Unsupervised learning

Data: X

Just data, no labels!

Goal: Learn some underlying hidden 
structure of the data

Applications

● Resolves Clustering, 
dimensionality reduction, etc.

Source: Introduction to Unsupervised Learning (Kmeans clustering), by Sachin, 2021, Medium 
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 Reinforcement learning

An autonomous agent learns how to solve 
a task, through trial and error, from 
interaction with an environment

Goal: Problems involving an agent 
interacting with an environment which 
provides numeric reward signals that 
reflect how good its actions were.

Source: Reinforcement Learning real-world examples, by Ajitesh 
Kumar, 2022, VitaFlux
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 Comparison
Takeaways: 

● Supervised Learning is about learning to predict from examples of correct predictions
● Unsupervised learning is about learning hidden patterns within unlabeled data
● Reinforcement learning is about agents learning by themselves how to take good 

actions in their environments. 
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Success stories of 
RL02

-----------------------------------------------------------------------------------------------
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 Success stories of RL: The Tip of the Iceberg!
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 Success stories of RL: Games
#1 ATARI 
Source: D. Silver, “Lecture Notes in advanced topics in Machine Learning’’, 2020.
From https://www.davidsilver.uk/wp-content/uploads/2020/03/intro_RL.pdf

                                                                                                    

#4 Dota2
Source: Nested - Artificial Intelligence, 2020.
From https://nested.ai/2020/10/26/dota-2-with-large-scale-deep-reinforcement-learning/

 #2 AlphaGo 
Source: AlphaGo Movie, 2017.
 From https://www.youtube.com/watch?v=8tq1C8spV_g&t=1s

#3 AlphaZero  
Source: Google DeepMind, 2017.
 From https://www.youtube.com/watch?v=WXHFqTvfFSw
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 Success stories of RL: Biology

Example: Protein Design

Reinforcement learning: From board games to protein design
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https://www.sciencedaily.com/releases/2023/04/230420141759.htm


 Success stories of RL: Biology

AlphaFold: Using AI for scientific discovery
Source: Deepmind, 2020
From https://www.deepmind.com/blog/alphafold-using-ai-for-scientific-discovery-2020

Protein folding explained
Source: Google DeepMind, 2020.

From https://www.youtube.com/watch?v=KpedmJdrTpY
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 Success stories of RL: Autonomous driving

Self-Driving Cars
Source: 9 Reinforcement Learning Real-Life Applications, by Pragati Baheti, 2022, V7 Labs
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https://www.v7labs.com/blog/reinforcement-learning-applications#h1


 Success stories of RL: Robotics

Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation 
Source: Peter Pastor [Youtube channel], 2018
From: https://www.youtube.com/watch?v=W4joe3zzglU
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 Success stories of RL: Healthcare

Source: Yu, C., Liu, J., Nemati, S., & Yin, G. (2021). Reinforcement learning in 
healthcare: A survey. ACM Computing Surveys (CSUR), 55(1), 1-36.

Example of dynamic treatment regimes (DTRs): To 
create a DTR, someone must input a set of clinical 
observations and assessments of a patient. Using 
previous outcomes and patient medical history, the 
learning system will then output a suggestion on 
treatment type, drug dosages, and appointment 
timing for every stage of the patient’s journey. 
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 Success stories of RL: Natural Language Processing

In NLP, RL can be used in text summarization, 
question answering, and machine translation just to 
mention a few. 

Source: Neptune.ai
retrieved from: https://neptune.ai/blog/reinforcement-learning-applications

For more details:Link 
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 Success stories of RL: Recommendation systems

The “Frequently Bought Together” section on 
Amazon, a “Customers Also Liked” tab online at 
Target, and the “Recommended Reading” articles 
from news outlets all utilize learning machines to 
generate recommendations. Specifically for news 
reading, RL agents can track the types of stories, 
topics, and even author names someone prefers 
so that the system can queue the next story they 
think they would enjoy. 
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 Success stories of RL: Energy Conservation

Source

RL-based Home energy management systems
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https://www.deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-by-40
https://www.semanticscholar.org/paper/Residential-Energy-Management-with-Deep-Learning-Wan-Li/ce02b13f80c14c7a2116f83171415c7751a043ee


 Success stories of RL: Traffic Light Control

The Continuous traffic monitoring 
in complex urban networks helps 
build a literal and figurative “map” 
of traffic patterns and vehicle 
behavior. 

Source: Kim, D., & Jeong, O. (2019). Cooperative traffic signal control with traffic flow 
prediction in multi-intersection. Sensors, 20(1), 137.
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 Success stories of RL: Marketing and advertising

For example, 
marketing and 
advertising 
platforms can use 
RL to associate 
similar companies, 
products, and 
services to 
prioritize for 
certain customers. 

Source
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https://dlabs.ai/blog/5-ways-machine-learning-can-transform-your-digital-marketing/


Key concepts and 
terminology03

-----------------------------------------------------------------------------------------------
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 Reinforcement Learning

Reinforcement Learning is the study of agents and how they learn to perform complex tasks by trial 
and error. It formalizes the idea that rewarding or punishing an agent for its behavior makes it more 
likely to repeat or forego that behavior in the future.

Source: TDM: From Model-Free to Model-Based Deep Reinforcement Learning, by 
Vitchyr Pong, 2018, Berkeley Artificial Intelligence Research

Source: Simple Beginner’s guide to Reinforcement Learning & its implementation, by 
JalFaizy Shaikh, 2017, Analytics Vidhya
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https://people.eecs.berkeley.edu/~vitchyr/
https://www.analyticsvidhya.com/blog/author/jalfaizy/


 Deep Reinforcement Learning

Source: Kim, D., & Jeong, O. (2019). Cooperative traffic signal control with traffic flow prediction in 
multi-intersection. Sensors, 20(1), 137.
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 RL framework

Source: Reinforcement Learning Real-world examples, by  Ajitesh Kumar, 2022,  Analytics Yogi. 
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 RL framework: example#1

Goal: reach the diamond block (S4)

State: the position of the agent (s1 
or s2, or s3, etc.)

Action: move up, down, right, left

Reward: (+1) reward if it reaches the 
diamond block and (-1 ) reward if it 
reaches the fire pit. Source: Reinforcement Learning Tutorial, Javatpoint
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 RL framework: example#2

Goal: pick objects with different 
shapes

State: Raw pixels from camera

Action: move arm, grasp

Reward: positive (+1) when pickup is 
successful

Source: Introduction to Deep Reinforcement Learning (Deep RL) by Lex 
Fridman, 2019, MIT Deep Learning 6.S191
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 Markov decision process 
An RL problem is typically formulated as a Markov Decision Process (MDP)

A (finite) MDP consists in a tuple (S, A, P, R, 𝛾) where:

● S is a (finite) set of states
● A is a (finite) set of possible actions
● P: S x A x S -> [0, 1], P is the transition probability distribution modeling the system 

dynamics: P(s, a, s’)=P(st+1=s’ | st=s, at=a)
● R: S x A x S -> |R (set of real numbers)  is the reward function
● 𝛾:  the discount factor
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 Markov decision process 
Markov Property:  

- the future is independent of the past given the present

A stats S is Markov if and only if:

● Once the current state is known, the history of information 
encountered so far may be thrown away, and that state is a 
sufficient statistic that gives us the same characterization of 
the future as if we have all the history.
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 Markov decision process 
In a typical RL problem, at time t, an agent interacts with the 
environment and takes an action at when the environment is in 
state st. Consequently, the environment moves to a new state 
st+1,  and the agent receives a reward rt+1 that expresses how 
good its action was.

Note that the Markov Property implies that our agent needs 
only the current state to decide what action to take and not the 
history of all the states and actions they took before.

The goal of the MDP is to find a policy, often denoted as ℼ,  that 
yields the optimal long-term reward.
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 Markov decision process 
Markov Property:  

● Could the blackjack card game verify the Markov Property?

Source: Mobile Premier league, 2022
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 Markov decision process 
Markov Property:  

● Could the blackjack card game verify the Markov Property?

● The game can be played successfully just by knowing our current state 
(what cards we have in hand and the opponent’s one face-up card)

Source: Mobile Premier league, 2022
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▪ Q1: Which of the following control problem or 
decision task could have a Markov property? 

 

MDP: Quiz!

Driving a car (1)

Decide whether to Invest in a stock or not (2)

Choose a medical treatment for a patient (3)

Diagnose a patient’s illness (4)

36



 States and observation 
A state s describes the environment completely to the agent. Nothing is hidden in the state. 
● e.g: a robot might have states like joint angles, velocity, position as the states defining it.

An observation o is a partial description of a state, which may omit information. 

● Complete Observation: when the agent is able to observe the complete state information 
that defines the status of the environment/ world after the agent has acted out a certain 
action, in it.
○ e.g: chess can be represented completely by the positions of all the pieces on the 

board.
● Partial Observation: when the agent is able to observe only partial information regarding 

the state of the environment.
○ e.g: poker since a player cannot observe other players’ cards
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 States and observation 
A state be represented as:
●  Scalar (rank-0 tensor): temperature
● Vector (rank-1 tensor): [position, velocity, angle, angular velocity]
● Matrix (rank-2 tensor): grayscale pixels from an Atari game
● Data cube (rank-3 tensor): RGB color pixels from an Atari game

State preprocessing:
● Cleanup
● Numerical representation
● Standardization: so that each feature has a similar range and mean
● …

38



 Actions 
Actions are the things that the agent can perform in order to influence the environment. 

Different environments allow different kinds of actions. We distinguish: 

● Discrete actions mean that the agent has a finite action space to take the action from. 
Example: In a maze, the agent can go up, down, left or right..

● Continuous actions have some value attached to the action. The agent has an infinite 
action space. Example: For a robotic arm, actions involve controlling the angles or positions 
of its joints, which exist in a continuous space.

● Hybrid actions: mix of both. Example: for a robot learning to navigate and pick up objects, 
actions include discrete movements (forward, backward, turn) and continuous actions for 
grasping objects (adjust gripper position or force)

The set of all valid actions in a given environment is called the action space.
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 Reward
 A reward is a scalar feedback signal that indicates how well the agent is doing at a given step. 

rt+1= R (st, at, st+1)

where R (st, at, st+1) denotes the the reward received for being in a state st, taking an action at 
and ending up in a state st+1.

The reward is frequently simplified to just a dependence on the current state rt+1= R (st)  or 
state-action pair rt+1= R (st, at)

The agent’s sole objective is to maximize the total reward it receives over the long run. The 
reward should therefore be designed in a way that incentivizes the desired 
behavior.
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 Reward
A reward signal can be dense or sparse:

●  A sparse reward is one which produces a neutral reward signal (usually r = 0) for most of 
the time steps, and a positive and negative reward only when the environment terminates. 

●  A dense reward is the opposite: it provides a lot of nonneutral reward signals indicating 
whether the last action was good or bad, so that in most time steps an agent will receive a 
positive or negative reward.

● Sparse reward are usually more challenging than dense rewards
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 Example of MDP Formulation
● A mobile robot has the job of collecting empty soda cans

● It runs on a rechargeable battery

● Robot decisions are based on the energy level: high or low

● In each state, the agent can decide to (1) search for a can for 

a certain period of time (2) remain stationary and wait for 

someone to bring it a can (3) recharge battery

● Reward is 

○ Generally equal to the number of collected cans
○ 0 in recharge mode
○ negative if runs out of power while searching (very bad as 

agent needs to be rescued)

Source: Google Research, 2023

42



 Example of MDP Formulation

● State Space? 
● Set of possible actions ? A(low) and A(high)
● Reward?
● Transition probabilities?

Source: Google Research, 2023Source: Reinforcement Learning-An Introduction, a book by Richard Sutton
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https://en.wikipedia.org/wiki/Richard_S._Sutton


 Example of MDP Formulation: State

● State Space={high, low} 

Source: Google Research, 2023Source: Reinforcement Learning-An Introduction, a book by Richard Sutton
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https://en.wikipedia.org/wiki/Richard_S._Sutton


 Example of MDP Formulation: Action

● Set of possible actions ? 
○ A(low)={search, recharge, wait} 
○ A(high)={search, wait}

Source: Google Research, 2023Source: Reinforcement Learning-An Introduction, a book by Richard Sutton
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https://en.wikipedia.org/wiki/Richard_S._Sutton


 Example of MDP Formulation: Transition Probability

● Transition probabilities?

Source: Google Research, 2023

Source: Reinforcement Learning-An Introduction, a book by Richard Sutton
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 Example of MDP Formulation: Reward

● Reward?

Source: Google Research, 2023

Source: Reinforcement Learning-An Introduction, a book by Richard Sutton
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 Episodic and continuing tasks
We refer to a complete sequence of interaction, from start to finish, as an 

episode.

Episodes are also called Trajectories or rollouts.

Episodic tasks come to an end whenever the agent reaches a terminal state. 
e.g: super mario

Continuing tasks are tasks that continue forever (no terminal state). e.g: 
stock trading
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Episodic tasks have a starting point 
and an ending points (a terminal state)

Continuing tasks continue forever (no 
terminal state)

 Episodic and continuing tasks

Source: jeuxvideo.com, 2023

Source: droitdunet.fr, 2023
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 Example of MDP Formulation: Reward

● Reward?

Source: Google Research, 2023

Source: Reinforcement Learning-An Introduction, a book by Richard Sutton
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 Return
The return Gt is the total discounted reward from time-step t.

 The discount γ ∈ [0, 1] characterizes the “foresightedness” of the agent: 

● When this discount rate is close to zero, the agent will care more about the immediate 
reward. 

● When it is close to 1, the agent will care more about the long term reward. 
● Most of the time, is set to something between 0.9 and 0.99: 

○ In this case, we look into future rewards, but not too far
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 Policy
● A policy is the “brain” of tha agent: It is  the function that tells us what 

action to take given the state we are in. It maps states into action in order 
to enable the agent of maximum reward. 

● We often denote the parameters of such a policy by 𝛳 :

○ Deterministic policy: is a mapping π: S -> A. 
■ At a given state, the policy will always return the same action

 
○ Stochastic policy: is a mapping 

■ π: S x A -> [0,1]
π(a|s) = P(At=a| St = s)

■ The policy outputs a probability distribution over actions
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▪ Q1: Consider a deterministic policy π: S -> A 
where: π(low) = search , π(high) = search
Which of the following statements are true, if 
the agent follows the policy? 

 

Policy: Quiz!

If the state is low, the agent chooses action search

If the action is low, the agent chooses state search.

The agent will always search for cans at every time 
step.

If the state is high, the agent chooses to wait for 
cans.

Source: Reinforcement Learning 101 by Srimanth Tenneti, 2020, Analytics 
Vidhya
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▪ Q2: Consider a different stochastic policy 
▪ π: S x A -> [0,1] where: π(recharge∣low)=0.3, π(wait∣low)=0.5, 

π(search∣low)=0.2, π(search∣high)=0.6 π(wait∣high)=0.4
Which of the following statements are true, if the agent 
follows the policy? 

 

Policy: Quiz!

If the battery level is low, the agent will always decide to wait for 
cans.

If the battery level is high, the agent chooses to search for a can 
with 60% probability, otherwise waits for a can. 

If the battery level is low, the agent is most likely to decide to wait 
for cans.

Source: Reinforcement Learning 101 by Srimanth Tenneti, 
2020 Analytics Vidhya
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 Gridworld example
Environment:  The world is primarily composed of nine patches of grass. But 
two out of the nine locations have large mountains.

States: We will think of each of the nine possible locations in the world as states 
of the environment.

Actions: At each point in time the agent can only move up, down, left or right 
and can only take actions that lead it to not get off the grid.
The arrows show the possible movements that we are allowed to take.

Goal of the agent: is to get to the bottom right hand corner of the grid as 
quickly as possible.

Episode ending condition:  the episode finishes when the agent reaches the 
goal.

Reward: the agent receives a reward of:
- -1 for most transitions. 
- If an action leads the agent to encounter a mountain it receives -3. 
- And if it reaches the goal state it gets a reward of 5 and the episode ends.

Source: Deep Reinforcement learning nanodegree program, Udacity 2022
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 Gridworld example

Source: Deep Reinforcement learning nanodegree program, Udacity 2022
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 Gridworld example

Source: Deep Reinforcement learning nanodegree program, Udacity 2022
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 Gridworld example

Source: Deep Reinforcement learning nanodegree program, Udacity 2022
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 Gridworld example

For each state, the state-value function yields 
the expected return, if the agent started in 

that state, and then followed the policy for all 
time steps.

Source: Deep Reinforcement learning nanodegree program, Udacity 2022
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Value functions

The value function is the sum of the rewards the agent is expected to 
accumulate starting from the current state given a policy π. It evaluates the 
quality of the states. The state that will be chosen by the agent will be the 
state with the maximum value function. It is presented by the following 
equation:

For each state s

   It yields the expected return

          if the agent starts in state s

and then uses the policy
60



▪ Q1: Which of the following statements are 
correct:

 

Value function: Quiz!

The value of a state may differ depending on the policy that 
is being followed by the agent

The value of a state depends on the initial state only 
regardless of the policy being followed

Given a policy, the value function maps the states to the 
expected returns

If 𝛾=1, the the value function maps the states to the 
expected immediate reward

s=3

s=1
s=2

r = 1

r = 2

end

end
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▪ Q1: Which of the following statements are 
correct:

 

Value function: Quiz!

✖

The value of a state may differ depending on the policy that 
is being followed by the agent

The value of a state depends on the initial state only 
regardless of the policy being followed

✖Given a policy, the value function maps the states to the 
expected returns

If 𝛾=1, the the value function maps the states to the 
expected immediate reward

s=3

s=1
s=2

r = 1

r = 2

end

end
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Value functions

An important observation is that the value of a state is not dependent on the immediate rewards 
only, but it considers the long term rewards (optionally discounted)

If you have the false impression that we should always take the action with the highest immediate 
rewards, then have a look at the following example: 

s=3

s=1 s=2

r = 1

r = 2

end

s=4

end

r = - 20

Following the states with 
maximum immediate 
reward could lead to a trap!

start

Source: iStockPhoto.com, 2023
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 Gridworld example

(-1)+(-1)+(-1)+(-3)+(-1)+(-1)+(-3)+5 = -6
        (-1)+(-1)+(-3)+(-1)+(-1)+(-3)+5 = -5
                 (-1)+(-3)+(-1)+(-1)+(-3)+5 = -4
                          (-3)+(-1)+(-1)+(-3)+5 = -3
                                   (-1)+(-1)+(-3)+5 = 0

(-1)+(-3)+5 = 1
(-3)+5 = 2

5 = 5

(Supposeno discount 𝛾 =1) 

Source: Deep Reinforcement learning nanodegree program, Udacity 2022
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 Gridworld example

V(st) = (-1)+(-3)+5 = (-1) +V(st+1) = (-1) +(2) = 1

⇒ The value of any state can be expressed as the sum of 
the immediate reward and the discounted  value of the 
state that follows.

(Suppose no discount 𝛾 =1) 
Source: Deep Reinforcement learning nanodegree program, Udacity 2022
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 Bellman expectation equation
All bellman equations attest the fact that value functions satisfy recursive 
relationships.
The state value function can be decomposed into immediate reward plus 
discounted value of successor state. 

The value of any state = 

the immediate reward + the discounted

value of state that follows following the policy

66



▪ Q1: The policy given by: π(s1) = right , π(s2) = 
right, π(s3) = down, π(s4) = up, π(s5) = right, 
π(s6) = down, π(s7) = right, π(s8) = right
Assume 𝛾 =1. What is v(s1)?

 

Value function: Quiz!

     -1

0

1

2 Source: Deep Reinforcement learning nanodegree program, Udacity 2022
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▪ Q1: The policy given by: π(s1) = right , π(s2) = 
right, π(s3) = down, π(s4) = up, π(s5) = right, 
π(s6) = down, π(s7) = right, π(s8) = right
Assume 𝛾 =1. What is v(s4)?

 

Value function: Quiz!

     -1

0

1

2 Source: Deep Reinforcement learning nanodegree program, Udacity 2022
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▪ Q3: Select the statements that are true:

 

Value function: Quiz!

     v(s6) = -1 + v(s5)

v(s7) = -3 + v(s8)

v(s1) = -1 + v(s2)

v(s4) = -3 + v(s7)

v(s8) = -3 + v(s5)
Source: Deep Reinforcement learning nanodegree program, Udacity 2022
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 What’s being optimal
● When is a RL problem solved? 

○ When we find a policy π that achieves a lot of reward 
over the long run → it’s not about maximizing the 
immediate rewards

● What can help us in solving this optimality problem is the 
findings of the mathematician Bellman and, in particular, it’s 
his famous Bellman equation. We’ll see this in more details 
later on.

● As we are looking for the optimal policy for making decisions, 
we need a criteria that allows us to order policies or give a 
rank for each one.
○ Value functions define a partial ordering over policies

“In the first place I was interested 
in planning, in decision making, in 
thinking. But planning is not a good 
word for various reasons. I decided 
therefore to use the word, 
"programming." I wanted to get 
across the idea that this was 
dynamic, this was multistage, this 
was time-varying-”

Richard Ernest Bellman
(August 26, 1920 – March 19, 1984) 

Source: Wikipedia, 2023
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 What’s being optimal
A policy π is defined to be better than or equal to another policy π’ if its expected 
return is greater than or equal to  that of the other policy π for all states.

More formally,

Source: Deep Reinforcement learning nanodegree program, Udacity 2022 71



 What’s being optimal
Note: It is often possible to find two policies that cannot be compared.

There may be more than one optimal policy, we denote the optimal policies by π*
It is guaranteed to exist but may not be unique ⇒ It’s the solution to the MDP.

They share the same state-value function, denoted v*:
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▪ Q1: Select the statements that are true 
(assume ૪=1):

 

Ordering Policies: Quiz!

𝝅1 >=  𝝅2 and  𝝅3 >=  𝝅2

𝝅2 >=  𝝅1 and  𝝅2 >=  𝝅3 

𝝅1 >=  𝝅3 and  𝝅3 >=  𝝅4 

𝝅4 >=  𝝅2 

𝝅2 >=  𝝅4 

s=3

s=1 s=2

r = 1

r = 2

end

s=4

end

r = - 20

𝝅1: agent always goes right
𝝅2: agent always goes down
𝝅3: agent goes right with a probability of 0.5 and 
down with a probability of 0.5 
𝝅4: agent goes right in 10% of cases and in 90% of 
cases executes the “down” action

start
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Action-Value functions

The action-value function of a state s  and action a  under a policy π, 
denoted by qπ(s,a) ,  is the expected return when starting in the state, 
taking the action and following the policy thereafter.

For each state s and action a
it yields the expected return

 if the agent starts in state s 
and takes action a

                              and then uses the policy to choose its actions for 
all time steps
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Action-Value functions
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Action-Value functions

Source: Deep Reinforcement learning nanodegree program, Udacity 2022
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What is being Optimal
By interacting with the environment the agent estimates the optimal action-value function

We obtain q*                 π*

From that estimation, it can quickly obtain an optimal policy π∗ . For each 
state, we pick the action that yields the highest expected return.

Source: Deep Reinforcement learning nanodegree program, Udacity 2022
Source: Deep Reinforcement learning nanodegree program, Udacity 2022
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What is being Optimal
Optimal policies also share the same optimal action-value function, denoted q* 
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 Taxonomy of RL algorithms
All the methods in RL can be classified into various aspects:

● Model-free or model-based
● Value-based or policy-based
● On-policy or off-policy
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 Model-free and Model-based RL
Model: A model predicts what the environment will do next.  The term model refers to 
the transition function and the reward function

● Transitions: P predicts the next state (i.e., system dynamics)

P(s, a, s’)=|P(st+1=s’ | st=s, at=a)

● Rewards: R predicts the next immediate reward (e.g.,  rt+1 = |E(Rt+1 | st=s, at=a))

Model-based: The agent either has the model or tries to build an explicit 
representation of the environment based on its interactions with the environment

Model-free: The agent does not build a model of the environment. Instead, the agent 
uses the interactions with the environment to find out a policy and/or value function.
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 Value-Based and Policy-Based learning
● Policy-based

○ policy 
○ No value function

● Value-based
○ No policy (implicit)
○ A value function

● Actor critic 
○ policy 
○ value function
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 Value-Based and Policy-Based learning

Value-Based Learning
The agent optimize the value function, 
that it uses to select the action to take 
at each step, e.g. the action with the 

highest value estimate

Policy-Based Learning
The agent optimizes its policy right 

away without passing through a value 
function. The agent takes the action 

with the highest probability.
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 On-Policy and Off-Policy
This affects how training iterations make use of data.

● On-Policy: it learns on the policy—that is, training can only utilize data
generated from the current policy π. This implies that as training iterates through 
versions of policies, π 1 , π 2 , π 3 , . . ., each training iteration only uses the current 
policy at that time to generate training data. As a result, all the data must be 
discarded after training, since it becomes unusable.

● Off-Policy: Any data collected can be reused in training.
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 Taxonomy of RL algorithms
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 Value-Based learning
Recall that value-based methods: Train a value function to learn which state is more valuable and 
use this value function to take the action that leads to it.

How can the agent consolidate his experience to learn this value function?
- The agent interacts with the environment and collects trajectories. The accumulated 

experience can be used to learn the value function.

The agent needs more episodes to collect better informed decisions and truly understand the 
environment.
● The agent hasn’t attempted each action from each state.
● The environment dynamics are stochastic.

Source: Deep Reinforcement learning nanodegree program, Udacity 2022
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 Q-learning: Big picture
 Q-Learning is an off-policy value-based method that uses Bellman equation as a 
basis to train its action-value function.

Q-Learning is the algorithm we use to train our Q-function, an action-value function 
that determines the value of being at a particular state and taking a specific action at 
that state.

Q-function is encoded by a Q-table, a table where each cell corresponds to a 
state-action pair value

Source: Deep Reinforcement learning nanodegree program, Udacity 2022 89



 Q-learning: The link between values and policy
 Question: How can we find the optimal policy once we have this  Q-table (or the value 
of each state-action pair)?

Note that whenever the value of each state-action pair is known, the optimal action can be 
determined from the following equation:

In other words, if we have an optimal Q-function, we have an optimal policy since we know 
the best action to take at each state.
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 Q-learning: estimating Q values
 Question:  How can we fill in this Q-table so that it includes the values of each 
state-action pair?
We want to find the Q values without the need for prior knowledge of environment dynamics 
(model-free RL), and, instead, leverage our interactions with the environment for determining 
the value of each state-action pair.

If, for every action, the reward and the next state can be observed, one trick is to use the 
following update rule which is based on Bellman equation:

For each interaction with the environment, we update the Q value based on 
the equation above. Then, after a large number of interactions with the 
environment, the action values Q will converge to the true Q values. 91



 Q-learning: The Exploration-exploitation tradeoff
 Before giving an example on how to use Q-learning, note that In the beginning, our Q-table 
is useless since it gives arbitrary values for each state-action pair (most of the time, we 
initialize the Q-table to 0). The agent must therefore continually explore its environment by 
attempting different states and actions and observing its obtained reward. 

By only exploring his environment, the agent risks to end in the bad state. At some point, the 
agent needs to start taking advantage of what it has learned so far. As the agent explores the 
environment and we update the Q-table, it will give us a better and better approximation to 
the optimal policy. This is one of challenges of RL: finding the right balance between 
exploration and exploitation.
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 Q-learning: The Exploration-exploitation tradeoff

Exploration
Try different random actions in 

order to discover more 
information about the 

environment 

Exploitation
use known information to 

maximize reward
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 Q-learning: The Exploration-exploitation tradeoff

At each step, the agent has two choices. He should either act greedily (take the best 
action based on the known information), or to try to find more information about the 
environment in order to improve his knowledge and to discover a way to obtain better 
rewards in the future.

Source: Hugging Face Deep RL Course 2018 94



Epsilon greedy policy

Exploration can be achieved using an epsilon-greedy policy. This policy consists of 
choosing the action among the possible ones with the highest Q value with 1-𝝐, 
probability, or to explore the environment by choosing it randomly with 𝝐,.

 → It’s common to start with a high 𝝐 and to reduce its value as your policy goes through 
more iterations.
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 Q-learning Example
● The reward is non-zero in two cases: 

Transition to the Goal (G) state has a +100 
reward, while moving into the Hole (H) state 
has a -100 reward. These two states are 
terminal states and constitute the end of 
one episode from

● The agent assumes a policy that selects a 
random action 90% of the time and exploIts 
the Q-table 10% of the time.

●  ℽ=0.9

Source: Gulli, A., Kapoor, A., & Pal, S. (2019). Deep learning with TensorFlow 2 and Keras,. Packt 
Publishing Ltd.
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 Q-learning Example
We initialize the Q-table

Since the agent has not 
learned anything yet about its 
environment, the Q-table has 
zero initial values.

Source: Gulli, A., Kapoor, A., & Pal, S. (2019). Deep learning with 
TensorFlow 2 and Keras,. Packt Publishing Ltd.
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 Q-learning Example
EPISODE#1:
Suppose: action#1 is 
randomly selected and 
indicates a move to the right

Source: Gulli, A., Kapoor, A., & Pal, S. (2019). Deep learning with 
TensorFlow 2 and Keras,. Packt Publishing Ltd.
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 Q-learning Example
EPISODE#1:
Suppose: action#2 is 
randomly selected and 
indicates a move in 
downward direction

Source: Gulli, A., Kapoor, A., & Pal, S. (2019). Deep learning with 
TensorFlow 2 and Keras,. Packt Publishing Ltd.

99



 Q-learning Example
EPISODE#1:
Suppose: action#3 is randomly 
selected and indicates a move to 
the right

It encountered the H state and 
received a -100 reward. The episode 
has just finished, and the agent 
returns to the Start state.

Source: Gulli, A., Kapoor, A., & Pal, S. (2019). Deep learning with 
TensorFlow 2 and Keras,. Packt Publishing Ltd.
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 Q-learning Example
EPISODE#2:
Suppose: The random actions 
chosen by the agent are two 
successive moves to the right

Source: Gulli, A., Kapoor, A., & Pal, S. (2019). Deep learning 
with TensorFlow 2 and Keras,. Packt Publishing Ltd.
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 Q-learning Example
EPISODE#3:
The first  random action taken 
by the agent is a move to the
right.

The Q value of state (0, 0) is 
now updated with a non-zero 
value. It is like giving credit to 
the earlier states that helped 
in finding the G state.

Source: Gulli, A., Kapoor, A., & Pal, S. (2019). Deep learning 
with TensorFlow 2 and Keras,. Packt Publishing Ltd.
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 Q-learning Example
EPISODE#4:
For this episode, suppose the 
agent decides to exploit the 
Q-table instead of randomly 
exploring the environment.
 
The Q-table suggests moving to 
the right for both states, which 
allows reaching the G state.

Source: Gulli, A., Kapoor, A., & Pal, S. (2019). Deep learning 
with TensorFlow 2 and Keras,. Packt Publishing Ltd.
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 Q-learning Example
If the Q-learning algorithm continues to run indefinitely, the Q-table will converge.
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 Tabular Q-learning algorithm 
1- Start with an empty table Q(s,a)

2- By interacting with the environment, obtain the tuple (s, a, r, s’). 

3- Update the Q(s,a) table using the Bellman approximation:

4- Repeat from step 2 until convergence

Note: For step 2, there is no single way for selecting the action. As such, the 
exploration-exploitation trade-off should be taken into account when selecting 
actions..
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Q-learning:  The “blended” update rule
We have been using the following Bellman approximation for updating the Q-table.

As we take samples from the environment, it’s generally a bad idea to assign new values on top of 
existing values, as training can become unstable. What is usually done in practice is updating the 
Q-table using a “blending” technique, which is simply averaging between old and new values of Q 
using a learning rate 𝛼∊[0, 1]

This allows values of Q to converge smoothly , even if our environment is noisy.
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 Tabular Q-learning: Final version
1- Start with an empty table Q(s,a)

2- By interacting with the environment, obtain the tuple (s, a, r, s’). 

3- Update the Q(s,a) table using the “blended” Bellman approximation:

4- Repeat from step 2 until convergence

107



 Tabular Q-learning: pseudocode

Source: Reinforcement Learning 101 by Srimanth Tenneti, 2020, Analytics Vidhya
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 Tabular Q-learning: on-policy or off-policy?
Recall:

● On-policy: using the same policy for acting and updating.

● Off-policy: using a different policy for acting (inference) and updating (training).

In Q-learning:  We are using the epsilon-greedy policy for acting (acting policy):

This acting policy is different from the greedy policy that is used to select the best next-state 
action value to update our Q-value (updating policy).

This is why we say that Q Learning is an off-policy algorithm.

109



 On-policy value-based learning: Sarsa

With Sarsa, another 
value-based 
algorithm, the 
epsilon-greedy policy 
selects the next 
state-action pair, not 
a greedy policy.

Source: Temporal Difference Methods by Xray, 2020, zhuanlan.zhihu
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 On-policy vs Off-policy value-based learning: Recap
● Off-policy: using a different policy for acting (inference) and updating (training).

● On-policy: using the same policy for acting and updating.

Source: Hugging Face Deep RL Course 2018

Source: Hugging Face Deep RL Course 2018 111



▪ Q1: Consider an agent that has a state made of 
two discrete variables. The first variable is in 
the set {0, 1, 2, 3} while the second variable is 
binary. If  the agent has 4 possible actions, how 
many states does the agent have?

 

Tabular Q-learning: Quiz!

     6

     8

    10

    12
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▪ Q2: Consider an agent that has a state made of two 
discrete variables. The first variable is in the set {0, 1, 
2, 3} while the second variable is binary. If  the agent 
has 4 possible actions, what is the dimension of the 
q table (rows, columns)?

 

Tabular Q-learning: Quiz!

     (4, 6)

     (4, 8)

    (6, 4)

    (8, 4)
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 Deep Q-learning02

-----------------------------------------------------------------------------------------------
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From Tabular Q-learning → to Deep Q-learning

 

Using the Q-table to estimate the Q-values is fine for small discrete 
environments. 

However, when the environment has numerous states or is continuous, as in 
most cases, a Q-table is impractical and not feasible.
Example: 
- Consider a state made of four continuous variables: 

- speed∈[0,1], angle1∈[0,1], angle2∈[0,1], acceleration∈[0,1]

- How many states?
- discretization step of 0.01→ 100 for each state
- Number of states: 100^4=1000000 states !!

Source: An Introduction to Q-Learning, 
2022, Datacamp
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From Tabular Q-learning → to Deep Q-learning

 

How overcome the Q-table burden?
- Instead of a table, use any function that maps the state and action onto 

the Q value
- Most popular solution is to use a deep neural network as a function 

approximator to approximate the Q-table: This is known as Deep 
Q-learning (see the DQN paper)

                                   Deep RL= RL + Neural Network

Did you know:
In 2013, DeepMind 
published a paper 
entitled “Playing Atari 
with Deep Reinforcement 
Learning” (DQN paper) 
that outlined their new 
approach to an old 
algorithm, which gave 
them enough 
performance to play six 
of seven Atari 2600 
games at record levels!

Source: A Hands-On Introduction to Deep Q-Learning using 
OpenAI Gym in Python, 2019, Analytics Vidhya
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Deep Q-learning

 

Idea of DQN is to use a neural network with parameters 𝜃, to estimate the Q-values :                                  
Q(s,a; 𝜃)≈Q*(s,a)

Inspired by supervised learning, the deep Q neural network learns to provide reliable estimates of 
the Q-values based on the interactions with the environment. The learned Q-function is then 
used by an agent to select actions. 

Note that DQN is only applicable to environments with discrete action spaces.

- The input is the state
- The prediction is the Q value for each action
- Desirable action: action with the largest Q value 

Source: An introduction to Deep Q-Learning by Thomas Simonini, 2018, freeCodeCamp
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Standard Deep Q-learning

 

The Q-learning algorithm is then modified as follows:

Zoom on the loss function:

TD error: 
difference between target and prediction 

y:
This term is usually denoted y and called 

TD target (or simply target) 
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▪ Q1: you want to build an RL agent that plays the breakout Atari 
game? Knowing that the agent receives raw pixel data as input 
(210, 160, 3). The action can take only one of the following 
actions: NOOP, FIRE, RIGHT, LEFT. Choosing between tabular 
and deep Q-learning, which of the following statements seem 
reasonable?

 

Tabular vs Deep Q-learning: Quiz!

The action space is discrete so tabular Q learning seems fine 

The action space is small so deep Q learning seems fine 

The state space is small so tabular Q learning seems fine 

The state space is large so deep Q learning seems fine 
Source: Deep Q-Learning for Atari Breakout by 
Jacob Chapman and Mathias Lechner , 2020, 
Keras
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▪ Q1: you want to build an RL agent that plays the breakout Atari 
game? Knowing that the agent receives raw pixel data as input 
(210, 160, 3). The action can take only one of the following 
actions: NOOP, FIRE, RIGHT, LEFT. Choosing between tabular 
and deep Q-learning, which of the following statements seem 
reasonable?

 

Tabular vs Deep Q-learning: Quiz!

The action space is discrete so tabular Q learning seems fine 

The action space is small so deep Q learning seems fine 

The state space is small so tabular Q learning seems fine 

✖ The state space is large so deep Q learning seems fine 
Source: Deep Q-Learning for Atari Breakout by 
Jacob Chapman and Mathias Lechner , 2020, 
Keras
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Standard Deep Q-learning: What could go wrong?

● At each time step, we learn from a tuple (s, a, r, s’) and then throw this experience => our 
neural network tends to forget the previous experiences as it overwrites with new 
experiences→Risk of forgetting previous experiences and no data efficiency

● It is more efficient to make use of previous experience, by learning with it multiple times.

Source: An introduction to Deep Q-Learning by Thomas Simonini, 2018, freeCodeCamp
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Standard Deep Q-learning: What could go wrong?

 

● Another limitation is that the data used for SGD update are highly correlated: 
these data samples are very close to each other, as they belong to the same 
episode (we know that future states and rewards depend on previous states 
and actions)→Need to reduce correlation between experiences

s1,a1,r2 s2,a2,r3 s3,a3,r4 s4,a4,r5 s5,a5,r6 s6,a6,r7 s7,a7,r8

s1,a1,r2 s2,a2,r3 s3,a3,r4

s1,a1,r2 s2,a2,r3 s3,a3,r4 s4,a4,r5

Episode 1

Episode 2

Episode 3
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Deep Q-learning with Experience Replay

 

● One solution to overcome the data inefficiency and the highly correlated data 
samples: Experience Replay buffer 

● If memory is full, the oldest experience is discarded to make space for the 
latest one. 

The minibatch contains 
experiences from different 
episodes and different policies. 
This has two advantages:
● break the correlations 

between samples
● data efficiency by using 

each transition in many 
updates
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Deep Q-learning with Experience Replay

Source: Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602.
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Deep Q-learning: The Instability issue

 

Recall that the parameters θ of the Q network are updated by performing gradient descent in the 
direction that minimizes the loss wrt model parameters θ.

                   L(θ)= (Q(s,a;θ) - y )2  with  y=r+ 𝛄 maxa’ Q(s’ ,a’;θ)

The TD target is estimated with the same 
neural network with parameters θ, whose 
parameters are being updated: Instability

we are getting closer to our target but also 
moving our target! It’s like chasing our own tail! 

Source: presentermedia.com, 2023
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Deep Q-learning: Improving Stability

 

To alleviate the instability, one trick is to use a snapshot of the network parameters from a few 
iterations ago instead of the last iteration for generating the target. This copy is called the 
target network (symbolically denoted with a hat ). 
The update rule for the network weights are modified as follows:
   
 
Before (Unstable):
  

After:  

 
The weights of the target network are updated after every T steps:

computed with θ 

computed with θ- 

Target-network
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Deep Q-learning: Connecting the dots!

Putting it all together:

● Initialize replay memory with fixed capacity
● Initialize action-value function q with random weights w
● Initialize target action-value weights w-     
● For number of episodes:

Observe state S
Choose action At from state St using policy 𝝅     𝝐 - greedy(q(S,A,w))
Take action At, observe reward Rt+1 and next state St+1

              Store experience tuple(St,At,Rt+1,St+1) in replay memory

Obtain random minibatch of tuples (sj,aj,rj+1,sj+1) from replay memory
Set target yj = rj + 𝛾 maxaQ(sj+1,a,w-)
Update: Δ𝔀 = 𝛼 ( yj - Q(sj,aj,𝔀) ) ∇w Q(sj,aj,𝔀)
Every C steps, reset w-    w
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Deep Q-learning: Connecting the dots!

Source: Deep Q-network (DQN)-II, by Jordi Torres, 2020, Towards Data Science
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Deep Q-learning: Soft updates
● When the weights of the Q network are allocated entirely to the target network after T time steps, this is called hard 

updates:
After T time steps: 

● When T is relatively large, which is usually the case (in the order of thousands of steps), learning can be slowed down 
significantly. This is because any change in the Q function is propagated only after the target network update (i.e., after 
T time steps). These “jumpy” updates could also result in learning instability.

● To remediate this, soft-updates can be applied instead. The idea is to apply smoother weight updates to the target 
network instead of periodical integral update (𝜏<1):  

Source: Udacity Deep RL project 1, Gregor, 2018, wpumacay
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 Gymnasium library
Gymnasium is a project that provides an API for all single agent reinforcement learning 
environments, and includes implementations of common environments: cartpole, pendulum, 
mountain-car, mujoco, atari, and more.
The API contains four key functions: make, reset, step and render, that this basic usage will 
introduce you to. 

Source: Create your first OpenAI Gym environment, by Savia Lobo, 2018, Packt Hub
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The environment is represented in Gymnasium by the Env class, which has the
following members:

● reset(): This resets the environment to its initial state, returning the initial
observation.

● step(): allows the agent to take an action in the environment. In gymnasium, if the 
environment has terminated, this is returned by step. Similarly, we may also want 
the environment to end after a fixed number of timesteps, in this case, the 
environment issues a truncated signal. If either of terminated or truncated are true 
then reset should be called next to restart the environment.

● render(): This method allows to visualize the agent in action.

 Gymnasium library
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The environment contains also:

● action_space: This is the field of the Space class, providing a specification
for allowed actions in the environment. It can be discrete, continuous or a 
combination of both.

● observation_space : This field has the same Space class, but specifies the
observations provided by the environment. It can be discrete much like action spaces.

 Gymnasium library
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DQN Improvements 

 

● Dueling DQN :
Paper: https://arxiv.org/abs/1511.06581

 Q(s,a) = V(s) + A(s,a)
Network will have two separate paths for value of state distribution and advantage distribution. On the output, 
both paths will be summed together, providing the final value probability distributions for actions. V(s): the value of 
being at that state
A(s,a): the advantage of taking that action at that state (how much better is to take this action versus all other 
possible actions at that state).
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DQN Improvements 

 

● Dueling DQN:

By decoupling the estimation, intuitively our DDQN can learn which states are (or are not) valuable without 
having to learn the effect of each action at each state (since it’s also calculating V(s)).

This is particularly useful for states where their actions do not affect the environment in a relevant way.

Source: Improvements in Deep Q Learning: Dueling Double DQN, Prioritized Experience Replay, and fixed…, by Thomas Simonini, 2018, FreeCodeCamp
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DQN Improvements 

 

● Dueling DQN :
Paper: https://arxiv.org/abs/1511.06581

 Q(s,a) = V(s) + A(s,a)

Source: Improvements in Deep Q Learning: Dueling Double DQN, Prioritized Experience Replay, and fixed…, by Thomas Simonini, 2018, FreeCodeCamp
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DQN Improvements 

 

● Double DQN:

Paper: https://arxiv.org/abs/1509.06461
Problem addressed: Deep Q-Learning tends to overestimate action values.
⇒ Harmful to training performance.
⇒ Can lead to suboptimal policies.
Especially in early stages

Basic TD target: 
Q(s,a) = r + 𝛾 maxa’ Q’( s’,a’)

Proposed TD target:

Choosing actions for the next state with the actual network but taking values of Q from target network
Q(s,a) = r + 𝛾 maxa’ Q’( s’, argmax Q(st+1,a))
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DQN Improvements 

 

● Double DQN:

Paper: https://arxiv.org/abs/1509.06461
Problem addressed: Deep Q-Learning tends to overestimate action values.
Remember how we calculate the TD target 

If the max q value contain any errors, then it will be positively biased and the resulting Q-values will be 
overestimated. We are not sure that the chosen action is the best action because:

● An agent may not fully explore the environment
● The environment may be noisy

Q target 
reward of taking that 
action at that state

max q value among all possible 
actions from next state
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DQN Improvements 

 

● Double DQN:

Overestimation in the face of uncertainty can be useful, e.g: at the beginning of training it can be helpful to 
overestimate Q π (s, a) for unvisited or rarely visited (s, a) pairs because this increases the likelihood that 
these states will be visited, allowing an agent to gain experience about how good or bad they are.

However, DQN overestimates Q π (s, a) for the (s, a) pairs that have been visited often.
This becomes a problem if an agent does not explore (s, a) uniformly. Then the
overestimation of Q π (s, a) will also be nonuniform and this may incorrectly change the
rank of actions as measured by Q π (s, a). Under these circumstances, the a an agent thinks
is best in s is in fact not the best action to take. 

Solution: when we compute the Q target, we use two networks to decouple the action selection from the target 
Q value generation.

● use our DQN network to select what is the best action to take for the next state (the action with the 
highest Q value).

● use our target network to calculate the target Q value of taking that action at the next state.
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DQN Improvements 

 

● Noisy networks:
Paper: https://arxiv.org/pdf/1706.10295.pdf 
Problem addressed: exploration of the environment.

Independent Gaussian noise: random value drawn from normal distribution
Factorized Gaussian noise: keeping only two random vectors: one with the size of input and another with size of 
the output of the layer.
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How do I frame my task in RL 

 

● Follow the MDP formalism.
● Start with simplified version of your task until you see signs of life.
● Simplify the feature space. Once it starts working, make the task harder until you solve the full 

task.
● Simplify the reward function. Formulate so it can give you FAST feedback to know whether you're 

doing the right thing or not.
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How can I diagnose my RL agent behaviour? 
⇒ Sanity checks 

 

● Sensitivity to the change in EVERY hyper parameter is considered as bad sign ⇒  non robustness. 

● Look at the episode return min/max/stdev/mean, max is important  not just mean

● Look at the episode length (sometimes more informative than  return.

● Health indicators differ from one class of algorithm to another. Policy gradients VS Q-learning 
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How can I diagnose my RL agent behaviour 
Q-learnings

 

● Metrics:
○ How to measure if your agent is converging to some locally optimal policy ⇒ epsilon-greedy

■ ⇒ Epsilon schedules are important

○ Learning rate schedule are helpful. This should be decreasing over time. 

○ TD-error is decreasing

○ The action-values estimates should increase as the cumulative reward increases.
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How do I evaluate my RL agent

 

● Use a separate test environment to evaluate the performance of your agent at a given time.

● Evaluate your agent for n test episodes and and average the reward per episode to have a good 
estimate. (n between 5 and 20)
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Course #3

Policy Based methods



Recall: Values and policy

 

Recall: The ultimate goal of an RL agent is to find a policy π that achieves a lot of reward over the long 
run. We find this policy through training. To train the agent, 

Value-Based Learning
Teach the agent to learn which state is more valuable and 

then take the actions that leads to the more valuable states

Policy-Based Learning
The agent learns a policy function directly without passing through 
a value function. The agent learns which action to take, given the 

state is in.

Source: Hugging Face Deep RL Course 2018 Source: Hugging Face Deep RL Course 2018
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Policy representation

 

- Recall that in Q-learning, the Q function was parameterized by a neural network that returns the 
values of actions as scalars. These values then dictate to us how to behave as we select the action 
with the largest value.

- In policy-based methods, we learn a policy function directly  by parameterizing it:

- Learning the policy means that we are going to look for the parameters 𝜃 that maximize a certain 

objective function J(𝜃), which is a performance measure with respect to parameter 𝜃.

𝜋(at|st) → 𝜋(at|st; 𝜃)
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Policy representation: Deterministic Policies

 

● Deterministic Policy:         
 π : s ⟶ a

Instead of sampling from the action probabilities, the agent need only choose the greedy action. 
The last layer of the neural network representing the policy is the action to be taken.
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Policy representation: Stochastic Policies

 

● Stochastic Policy:         
○ Categorical policies:

𝜋(ai|st; 𝜃)= P[at|st]=softmax(ai)
ai =maxi  𝜋(ai|st; 𝜃)

The agent passes the current environment state as input to the network, which returns action 
probabilities. Then, the agent samples from those probabilities to select an action.

Example: Atari game

Source: modified from Qu, X., Sun, Z., Ong, Y. S., Gupta, A., & Wei, P. (2020). Minimalistic attacks: How little it takes to fool deep reinforcement learning policies. IEEE 
Transactions on Cognitive and Developmental Systems, 13(4), 806-817. 
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Policy representation: Stochastic Policies

 

● Stochastic Policy:         
○ Gaussian policies: used mostly with continuous action spaces. The policy is a sample from a 

Gaussian distribution.
𝜋(ai|st; 𝜃)∼ N (μ(st), 𝞂2(st))

The mean μ and standard deviation of the normal distribution are both functions of the state 
features.
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The neural network that approximates the policy takes the 
environment state as input. The output layer returns the 
probability that the agent should select each possible 
action. Which of the following is a valid activation function 
for the output layer??

A: linear (i.e; no activation function)

B: Softmax

C: ReLu

Quiz!
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For continuous action spaces, the neural network has one node for 
each action entry (or index). For example, consider the action 
space of the bipedal walker environment, shown in the figure 
below.

Quiz!
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→ In this case, any action is a vector of four numbers, so the output 
layer of the policy network will have four nodes.

→ Every entry in the action must be a number between -1 and 1

Which of the following describes a valid output layer for the 
policy?

A: output layer with ReLu activation function.

B: output layer with softmax activation function

C: output layer with tanh activation function 

Quiz!
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Why policies may be more attractive than values?

 

- Simplicity: The policy is all what we are looking for when we are solving a RL problem. Therefore, 
whenever the agent is in a given state, it is more straightforward to use the policy directly to decide 
its next move instead of computing and/or storing the value of a state or action and then select the 
action that maximizes these values as in value-based methods. Doing this extra work of computing 
the Q or V values could be tedious especially for large action spaces. Why do the extra work?

Policy-based 
learning

Value-based 
learning

Source: Introduction to Reinforcement learning policy gradient, 2020, PyLessons 156



Why policies may be more attractive than values?

 

- Stochastic policies: An extra benefit of policy-based methods is that they can learn a stochastic 
policy while value functions can’t. One advantage of a stochastic policy is that it can capture the 
uncertainty/stochasticity of the environment. With a stochastic policy, the same state could lead to 
different actions (it is possible to have more than one action to choose from in a certain situation). 

- For example: In a poker game, the agent may not take the same action in response to the same 
hand since the probability of winning or losing depends on the opponent’s hand and how the 
betting has proceeded.

Source: PokerListings, 2023 157



Why policies may be more attractive than values?

 

- High dimensional or continuous action spaces:  In Q-learning for example, to be able to decide 
on the best action to take having Q(s,a) we need to solve a small optimization problem finding a, 
which maximizes Q(s,a). In the case of Atari with several discrete actions this wasn’t a problem: we 
just approximated values of all actions and took the action with the largest Q. 
But, if we have a large number of possible actions or an infinite possibility of actions? This 
optimization problem becomes hard as Q is  usually represented by nonlinear NN, so finding the 
argument that maximizes the function’s values can be tricky. In such cases, it’s more feasible to 
avoid values and work with the policy directly. 

For a self-driving car,, you can have a near 
infinite choice of actions (it can turn left by 
turning the wheel at  15°, 17.2°, 20°, 21,1°, 
21,2°, honk, turn right at 20°, etc…)

Source: Hugging Face Deep RL Course 2018
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Policy gradients: A subclass of policy-based methods

 

Policy gradient methods are a subclass of policy-based methods that estimate the weights of a 
policy through gradient-ascent.

In Policy-gradient methods, we optimize the parameter 𝜃 directly by performing gradient ascent 

on the objective function J(𝜃), which is the performance measure.

Note that there are other classes of policy-based methods where we optimize the parameter 𝜃 
indirectly by maximizing the local approximation of the objective function with techniques like hill 
climbing, simulated annealing or evolution strategies.
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Policy gradients: Big picture

 

We just learned that policy-gradient methods aim to find parameters θ that maximize the expected return.
Question: How we’re going to change our network parameters using the expected return to improve the 

policy?

Answer: The idea is that we’re going to let the agent interact during an episode. And if we win the episode, 
⇒ We can change the network weights a bit to make it more likely to select the actions it selected while in those 
states in the future. 

If the agent has lost the game, we update the network weights so that it is  less likely to repeat these 
decisions in the future. 

So, eventually, for each state-action pair, we want to increase the P(a∣s): the probability of taking that action 
at that state. Or decrease if we lost.

Source: Deep Reinforcement learning nanodegree program, Udacity 2022 161



Policy gradients: Big picture

 

The Policy-gradient algorithm (simplified) looks like this:

In policy-based methods, the optimization is most of the time on-policy since for each update, we 
only use data (trajectories) collected by our most recent version of πθ
 

.
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Policy gradients: More formally

 

Trajectory: sequence of states and actions.

𝞽 = s0, a0, s1, a1, .., sH, aH

A trajectory could correspond to a full episode or a part of the episode.

Horizon is the length of a trajectory, denoted by H.

R(𝞽) is the sum of discounted rewards from that trajectory.

R(𝞽) = r1+𝜸 r2,𝜸2 r3, .., 𝜸H-1rH
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Policy gradients: More formally

 

Policy-gradient is an optimization problem: we want to find the parameters θ that maximize 
our objective function J(θ). So, we need to use gradient-ascent. Our step for gradient ascent is:

 ɑ  is the step size that is generally allowed to decay over time. We can repeatedly apply this 
update rule in the hopes that θ converges to the value that maximize J(θ).
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▪ Q1: Why do we use gradient ascent instead of 
gradient descent to optimize J(θ)?

Policy gradient: Quiz!

We want to minimize J(θ) and gradient ascent gives us 
the gives the direction of the steepest increase of J(θ)

We want to maximize J(θ) and gradient ascent gives us 
the gives the direction of the steepest increase of J(θ)
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Policy gradients: More formally

 

Objective Function: gives us the performance of the agent given a trajectory and it outputs the 
expected return (called also expected cumulative reward).
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Policy gradients: More formally

 

Objective Function: gives us the performance of the agent given a trajectory and it outputs the 
expected return (called also expected cumulative reward).

● The expected return can be calculated as a weighted average as follows:
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Policy gradients: More formally

 

If we develop further the definition of the objective function provided earlier, the objective function can 
be expressed in terms of the policy as follows:

There are two problems with using the expression above for  computing the derivative of J(θ)

-Problem 1:  We can’t calculate the “true” gradient of J(θ) as it involves calculating the probability of 
each possible trajectory→ computationally expensive. Instead, we would rather use sample-based 
estimate based on the experience collected from some trajectories. 

- Problem 2:    The expression above involves the knowledge of state distribution (i.e., environment 
dynamics). But, this may not be known especially if our focus is on model-free reinforcement learning.
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Policy gradients: More formally
How overcome these two problems and find an estimate of the gradient of the objective 
function?

Good news: Policy gradient theorem!

This theorem will help us in deriving a differentiable expression for the objective function that does not 
involve the use of the state distribution. The policy gradient theorem states that: 

For any differentiable policy and for any policy objective function, the policy gradient is:

Source: Hugging Face Deep RL Course 2018
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Policy gradients: REINFORCE

Source: Reinforcement Learning-An Introduction, a book by Richard Sutton

1
2
3
4
5
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Policy gradients: REINFORCE

 

More into the gradient of the objective function:

The gradient is equal to the gradient of the log-probability of the action taken and it is scaled by the return :
- If return R( 𝜏 ) is high: it will push up the probabilities of the state-action combinations
- otherwise, it will push down the probabilities of the state-action combinations

⇒ In other words, we are trying to increase the probability of the actions that have given us 
good total reward and decrease the probability of actions with bad final outcomes.
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Policy gradients: REINFORCE

 

Difference from Q-learning:

● No explicit exploration is needed.
● In Q-learning: epsilon-greedy strategy. Now, with probabilities returned by the network, the 

exploration is performed automatically. In the beginning, the network is initialized with random 
weights and the network returns uniform probability distribution. THis distribution corresponds to 
random agent behaviour.

● No replay buffer is used. PG belong to the on-policy methods class. We can’t train on data obtained 
by an old policy.

● NO target network is needed.

172



Policy gradients: REINFORCE limitations

 

● The update process is very inefficient. We run the policy once, update once, and then throw away 
the trajectory.

● Correlation between samples: training samples in a single episode are usually highly correlated, 
which is bad for SGD training. For DQN, this was solved by considering a replay buffer. But, this 
solution is not applicable to the policy gradient family because these methods are on-policy. To 
solve this, the idea is, instead of communicating with one environment, we use several parallel 
environments and use their transitions as training data.

● Local optimum and exploration issues: Even with the policy represented as a probability 
distribution, there is a risk that the agent converges to some local optimal policy and stops 
exploring the environment. In DQN, this was solved by epsilon-greedy action selection. In 
policy-gradient methods, one solution for this is the use of entropy bonus. 
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Policy gradients: The Entropy Bonus

 

To prevent the agent from being stuck in a local optimum, we first  compute the entropy of the policy:

The entropy is a measure of uncertainty. It is positive and high when all actions have the same 
probability. The entropy become minimal if the agent has 1 probability for one action and 0 for all 
others (i.e., when the agent is 100% sure about an action)

Once the entropy is computed, it is then subtracted from the loss function in order to punish the agent 
for being too certain about the action to take. Note that the loss function is simply the negative of the 
objective function. 

⇒ this introduces new hyperparameter called entropy_beta. It is the scale of the entropy bonus in the 
loss function expression.
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Policy gradients: REINFORCE limitations

 

● High gradients variance: The gradient formula is proportional to the discounted reward while the 
range of this reward is heavily dependent on the environment. 

For example, in the cartpole, if the pole is held for 5 steps, the reward (undiscounted) is five. But, if 
we hold it for 100 steps, the total reward is 100. So, there is a large difference between these two 
scenarios. We need to do something about this, otherwise the training could become unstable. 

The simplest way for handling this is to subtract a value called baseline B(st) from the return. This 
baseline B(st) can be any function as long as it does not depend on the action. Some possible choices 
of the baseline are:

■ A constant value, which is normally the mean of the discounted rewards
■ The moving average of the discounted reward
■ The value of the state  V(s)
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Policy gradients: REINFORCE with baseline

Source: Reinforcement Learning-An Introduction, a book by Richard Sutton
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Learning material

 

● Reinforcement Learning-An Introduction, a book by Richard Sutton and his doctoral advisor 
Andrew Barto. An online draft of the book is available here

● Teaching material from David Silver including video lectures is a great introductory course on RL
● Technical tutorial on RL by Pieter Abbeel and John Schulman (Open AI/ Berkeley AI Research Lab).
● Reinforcement learning hands-on (Second edition), a book with tutorials by Maxim lapan.
● Huggingface deep RL course 
● Deep Reinforcement Learning nanodegree on Udacity.
● Andrej Karpathy’s Deep Reinforcement Learning: Pong from Pixels is a great introduction to build 

motivation and intuition.
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THANK YOU!

17/02/2025…….

178

-----------------------------------------------------------------------------------------------

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--


