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About the instructor

Who | am: Clément Royer

@ Maitre de conférences at Dauphine since 2019.
@ Research topics: Optimization and applications.
@ Email: clement.royer@lamsade.dauphine.fr

@ Webpage: https://www.lamsade.dauphine.fr/~croyer
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About these lectures

Repository: M https://tinyurl.com/3etmd46y

Learning goals

@ Have an optimization toolbox for ML;
@ Know the theoretical underpinnings;

@ Practical experience.
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@ Optimization problems in ML

© Optimization theory

© Gradient descent

@ Beyond gradient descent: Nonsmoothness

© Beyond gradient descent: Regularization
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@ Optimization problems in ML
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What's optimization?

Operations research;

Decision-making;

o

o

@ Decision sciences;

@ Mathematical programming;
o

Mathematical optimization.

= All of these can be considered as optimization.
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What's optimization?

Operations research;

Decision-making;

o

o

@ Decision sciences;

@ Mathematical programming;
o

Mathematical optimization.

= All of these can be considered as optimization.

My definition

The purpose of optimization is to make the best decision out of a set of
alternatives.
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Optimization ¢ Machine Learning

@ Optimization is a mathematical tool;
@ Used in many areas: Economics, Chemistry, Physics, Social sciences,...

@ Appears in other branches of (applied) mathematics: Linear Algebra,
PDEs, Statistics, etc.
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Optimization ¢ Machine Learning

@ Optimization is a mathematical tool;
@ Used in many areas: Economics, Chemistry, Physics, Social sciences,...

@ Appears in other branches of (applied) mathematics: Linear Algebra,
PDEs, Statistics, etc.

Machine Learning ¢ Optimization
@ Optimization targets a certain problem;
@ ML is not just about this problem;

@ Other features of ML (data cleaning, hardware,...) will not appear in
the optimization.
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Formulation of an (unconstrained) optimization problem

minimize f(w)
weRd
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Formulation of an (unconstrained) optimization problem

minimize f(w)
weRd

@ w represents the optimization variable(s);

@ d is the dimension of the problem (we will assume d > 1);

@ f(-) is the objective/cost/loss function.
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Formulation of an (unconstrained) optimization problem

minimize f(w)
weRd

@ w represents the optimization variable(s);

@ d is the dimension of the problem (we will assume d > 1);

@ f(-) is the objective/cost/loss function.

Maximizing f is equivalent to minimizing —f. J
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Example: SVM Classification

Given: A dataset {(x1,y1),---,(Xn,¥n)}-
@ x; is a feature vector in RY:

@ y; is a label.
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Example: SVM Classification

Given: A dataset {(x1,y1),---,(Xn,¥n)}-
@ x; is a feature vector in RY:

@ y; is a label.

Motivation: text classification

Using d words for classification:

@ x; represents the words contained in a text document:

bl = 1 if word j is in document i,
"W 0 otherwise.

@ y; is equal to +1 if the document addresses a certain topic of interest,
to —1 otherwise.

v
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Example: SVM Classification (2)

Learning process

o Given {(x;,y;)};, discover a function h: R? — R such that
h(xi)~y Vi=1,...,n.

@ Choose the predictor function h among a set A parameterized by a
vector w € RY: H = {h | h="h(;w), we Rd};
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Example: SVM Classification (2)

Learning process

o Given {(x;,y;)};, discover a function h: R? — R such that
h(xi)~y Vi=1,...,n.

@ Choose the predictor function h among a set A parameterized by a
vector w € RY: H = {h | h="h(;w), we Rd};

Linear model for text classification

o We seek a hyperplane in RY separating the feature vectors associated

with y; = +1 and those associated with y; = —1;
T

@ This corresponds to a linear model h(x) = x' w, and we want to

choose w such that:

. .
o xI.WZI lf}/i:“‘l
VI — 17"‘7”7 { erI‘WS —1 If_yI: _1

.
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Example: SVM Classification (3)

@ Our goal: penalize values of w for which h(x;) does not predict y; well
enough.

@ We use the hinge loss function

V(h,y) € R?, ((h,y) = max{l— yh,0}.

About the hinge loss

@ hy >1={(h,y) =0: hand y are of the same sign, |h| > 1 so good
prediction;

@ hy < —1=-¢(h,y) > 2: hand y are of opposite sign and |h| > 1 bad
prediction);

o |hy| <1={(h,y) € [0,2]: small penalty (value of |h| makes the
prediction less certain).
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Example: SVM Classification (4)

An optimization problem

1 n
minimize — max {1 — y;j(xFw ,0
weRd n; { yl( ! ) }
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Example: SVM Classification (4)

An optimization problem

1 En: T
minimize — max {1 — yi(x; w ,0
cR n P { yl( 1 ) }

@ Minimize the sum of the losses for all examples;

.
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Example: SVM Classification (4)

An optimization problem

N R T A2
mwlerﬂrg;zen;max{l — yi(xj w),0} + §HwH2
=

for A > 0.

@ Minimize the sum of the losses for all examples;

@ Regularizing term to promote small-norm solutions (more on that
later).

.
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Example: SVM Classification (4)

Source: S. J. Wright & B. Recht, Optimization for Data Analysis, 2022.

@ Red/Blue dots: data points labeled +1/-1;
@ Red/Blue clouds: distribution of the text documents;
@ Two linear classifiers:

@ Rightmost plot: maximal-margin solution.
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Typical optimization problem for ML

e Data, eg. {x;,y;}";.
o Model class H = {h(-;w), w € R9}

@ Loss function /.

Empirical risk minimization

1
minimize — ;E(h(x,, w),y;) +AQ(w)

/

f(w)

o f: Data-fitting term.

o : Regularization term.

.
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A few more examples

L. 1 2 T 2
minimize || Xw — y|| = - 3 S(xw — yi)?.

@ Simplest data analysis task possible.
o x; cRY y; eR.

@ Nontrivial to solve when n, d > 1.

A
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A few more examples
n

1 1
inimize — 11X . D _ T, '2‘
minimize - | Xw — y[[3 = 5 ;(x, w - y;)
@ Simplest data analysis task possible.
° x,-eIR{d,y,-EIR{.

@ Nontrivial to solve when n, d > 1.

Alternate losses for linear regression

o 1 loss: [ Xw —ylly =37, [xjw — yi
o Chebyshev loss: || Xw — y|ls = maxi<i<n [xfw — yil.

@ And more!
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A few more examples ('ed)

Binary classification (using CNNs)

1 n
minimize — log(1 + exp(—y;CNN(x;)) + Allwl]|7.
mimize 3 g1+ exp( 3 CNN(x) + Al wll

o Cross-entropy/Logistic loss.
o x; € R¥%xdox (image), y; € {—1,1} (class).
@ CNN: x; = z0 5 z(1) ... 2(1) where

| /-1 /—1 /—1
=g (z WOD Dy >) |
m,n,p

¢(z) = [max(z;,0)]; (ReLU activation).
@ w concatenates all (W', bl)l:O...(Lfl)-
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Generic form: minimize,, cra (W) + AQ(w).

o Defined based on data.

@ Use continuous functions (linear, ReLU, log/exp).

Distinctive aspects

@ Model complexity/Number of parameters.

@ Nonlinearity of operations.

@ Regularization/Lack thereof.
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© Optimization theory
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Local and global solutions

minimize f (w)
weRd

@ argmin,,crs f(w): Set of solutions (can be empty).

@ min, cgs f(w): Optimal value (can be infinite).
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Local and global solutions

minimize f (w)
weRd

@ argmin,,crs f(w): Set of solutions (can be empty).

@ min, cgs f(w): Optimal value (can be infinite).

Global and local minima

@ w™* is a solution or a global minimum of f if
f(w*) < f(w) Vw € RY.

@ w* is a local minimum of f if
f(w*) < f(w) Yw, ||[w — w*|| < € for some € > 0.
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Local and global solutions

minimize f (w)
weRd

@ argmin,,crs f(w): Set of solutions (can be empty).

@ min, cgs f(w): Optimal value (can be infinite).

Global and local minima
@ w™* is a solution or a global minimum of f if
f(w*) < f(w) Vw € RY.
@ w* is a local minimum of f if
f(w*) < f(w) Yw, ||[w — w*||2 < € for some ¢ > 0.

e Finding global/local minima is hard in general!

@ Regularity of f is needed.
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First notion of regularity: Smoothness

Class of C! functions

f : RY — R is continuously differentiable/C? if
o For any w € R, the gradient Vf(w) exists.
o Vf:RY — R? is continuous.
= f(v) ~ f(w) + VFf(w)T(v — w) for v close to w.

C. W. Royer Optimization for ML CIMPA 20



First notion of regularity: Smoothness

Class of C! functions

f : RY — R is continuously differentiable/C? if
o For any w € R, the gradient Vf(w) exists.
o Vf:RY — R? is continuous.
= f(v) ~ f(w) + VFf(w)T(v — w) for v close to w.

Class of Ci’l functions (L > 0)

fis Ci’l if it is C! and V£ is L-Lipschitz continuous, i.e.
V(v,w) € (RY)?,  [[Vf(v) = VF(w)| < L|v—w].

Ex) Linear regression, logistic regression, etc.
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Smoothness and optimality conditions

Problem: minimize,, cgd f(w), fCL.

First-order necessary condition
If w* is a local minimum of the problem, then

IVE(w™)ll2 = 0.

@ This condition is only necessary;
@ A point such that || Vf(w*)|| = 0 can also be a local maximum or a

saddle point.
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Smoothness and optimality conditions

Problem: minimize,, cgd f(w), fCL.

First-order necessary condition
If w* is a local minimum of the problem, then

IVE(w™)ll2 = 0.

@ This condition is only necessary;
@ A point such that || Vf(w*)|| = 0 can also be a local maximum or a

saddle point.
- . .

.

Picture from (Wright and Ma '22).
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Another notion of regularity: Convexity

Generic definition (+Wikicommons picture)

A function f : R? — R is convex if

f(y)
tf(x) + (1-t) f(y)

Y(u,v) € (RY)2, vt € [0,1],
F(tu+ (1— t)v) < ¢ F(u) + (L — £) F(v).

fixt+y(1-t) -
o

f@< —

—x —  xtry@n Y
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Another notion of regularity: Convexity

Generic definition (+Wikicommons picture)

A function f : R? — R is convex if

f(y)
tf(x) + (1-t) f(y)

Y(u,v) € (RY)2, vt € [0,1],
F(tu+ (1— t)v) < ¢ F(u) + (L — £) F(v).

fixt+y(1-t) -
//
fq)<

—x —  xtry@n Y

A

Examples in ML

@ Linear function w — a*w + b
o Norms [|wll, [lwl|1, [|wl]5.

o Logistic loss.

A
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Smooth convex functions

Convexity and gradient

A continuously differentiable function f : RY — R is convex if and only if

Yu,v eRY,  f(v) > f(u)+ VF(u)(v—u).
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Smooth convex functions

Convexity and gradient

A continuously differentiable function f : RY — R is convex if and only if
Yu,v eRY,  f(v) > f(u)+ VF(u)(v—u).

A key inequality in optimization.
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Convex optimization problem

minimize f(w), f convex.
weRd
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Convex optimization problem

minimize f(w), f convex.
weRd

Every local minimum of f is a global minimum.
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Convex optimization problem

minimize f(w), f convex.
weRd
Every local minimum of f is a global minimum.

If fisC1,

argmin f(w) = { W | [VF(@)]2=0}.

wcRd

Any point with a zero gradient is a global minimum!
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Strong convexity

Definition

A function f : R? — R in C! is p-strongly convex (or strongly convex of
modulus i > 0) if for all (u,v) € (R¥)? and t € [0, 1],

Fltu+ (1—t)v) < tf(u)+(1— t)f(v)—’zitu —t)|v — ul2.
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Strong convexity

Definition

A function f : R? — R in C! is p-strongly convex (or strongly convex of
modulus i > 0) if for all (u,v) € (R¥)? and t € [0, 1],

Fltu+ (1—t)v) < tf(u)+(1— t)f(v)—’zitu —t)|v — ul2.

Any strongly convex function in C! has a unique global minimizer.

Gradient and strong convexity

Let f : RY - R, f €CL. Then,

Vu,v €RY,  f(v) > f(u) + VF(u) (v — u)+§uv —ull2.
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© Gradient descent
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General optimization problem

minimize f (w).
weRd

Assumptions: f smooth (C!), bounded below.
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General optimization problem

minimize f (w).
weRd

Assumptions: f smooth (C!), bounded below.

Key properties
@ Smoothness: We will exploit the gradient of f.

@ In presence of convexity, get better guarantees.
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Negative gradient direction

. 1,1
minimize f(w feC.
weRd ( )7 £

Consider any w € RY. Then, one of the two assertions below holds:

@ Either w is a local minimum and Vf(w) = 0;

@ Or the function f decreases locally from w in the direction of -V f(w).
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Negative gradient direction

minimize f(w), f € Ci’l.
weRd

Consider any w € RY. Then, one of the two assertions below holds:
@ Either w is a local minimum and Vf(w) = 0;

@ Or the function f decreases locally from w in the direction of -V f(w).

V.

Key argument (Taylor expansion)

f(v) ~ f(w) + VFf(w)T(v — w) for v close to w.
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Gradient descent method

Inputs: wo € RY, ag >0, k=0.
Q Evaluate V£ (wy).
Q Set wy 1 = wy — a,VI(wyg).
© Increment k by 1 and go to Step 1.
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Gradient descent method

Inputs: wo € RY, ag >0, k=0.
Q Evaluate V£ (wy).
Q Set wy 1 = wy — a,VI(wyg).
© Increment k by 1 and go to Step 1.

Stopping criterion

@ Convergence criterion (optional): Stop when ||V f(wy)|2 < &;

@ Budget criterion (optional): Stop when k = knyax.
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Choosing the stepsize

Constant stepsize

If £ et set oy = 1
o Guaranteed decrease at every iteration;

@ But requires knowledge of L.

Decreasing stepsize
Choose ay such that o, — 0.

o Guarantees that f will decrease eventually (for small stepsizes);

o But steps get smaller and smaller.
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Choosing the stepsize (2)

What's done in optimization

@ Line search: At every iteration, «y is obtained by backtracking on a
subset of values (ex: 1, %, %, %, cey)

@ The chosen value must satisfy certain conditions (ex: decreasing the
function value).

What's done in optimization for ML

e Start with a fixed value until the method starts stalling (gradient gets
small);

@ Decrease the step size, then repeat.
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Analyzing gradient descent

minimize f(x), fe Ci’l.
xeRd

Gradient descent

o lteration: w1 = wy — a,V(wy), stop if Vi(wy)=0.
1
Z.

@ Typical choice in theory : ay =

Theoretical analysis

e Convergence: Show that ||V f(wy)||2 — 0;
e Convergence rate: Look at how fast ||V f(wy)|2 decreases.

o Worst-case complexity: Equivalent to convergence rate, measures the
cost of satisfying |V (w)||2 < e for e > 0.
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Convergence rates: Nonconvex case

If fe Ci’l and oy = %

i 1
ogf]g'ﬂ_l [VE(wi)ll2 < O <\/?>

after K > 1 iterations.
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Convergence rates: Nonconvex case

If fe Ci’l and oy = %

viwale <0 ()

min |
0<k<K-1 K

after K > 1 iterations.

A key inequality for the proof

V(v,w), f(v)<f(w) +Vf(w)T(v —w)+ éHv — wH%

@ Another key inequality in optimization.

o With v = wy 1 and w = wy, gives decrease in O(||Vf(wy)|3).
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Convergence rates (convex case)

Let f € Ci’l be convex and ay = % in GD. Then, for K > 1,

@ If f is convex,

fwi)—F <O (;) .

@ If f is p-strongly convex,

fFwi) — f* <O <(1— ‘L‘)K> .
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Convergence rates (convex case)

Let f € CH! be convex and ax = L in GD. Then, for K > 1,
L L

@ If f is convex,

fwi)—F <O (;) .

@ If f is p-strongly convex,

fFwi) — f* <O <(1— ‘L‘)K> .

€

Interpretation

Nonconvex ‘ Convex ‘ Strongly convex

o(1/VK) [o/K) | o)

Stronger guarantees for convex problems at lower cost.
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Conclusion: Gradient descent

A versatile algorithm

@ Applies as long as f has a gradient.
@ Various implementations (stepsizes).

@ Theoretical guarantees for convex/nonconvex problems.

Going further
@ What if the function does not have a gradient?

@ What about the problem structure?
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@ Beyond gradient descent: Nonsmoothness
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Back to where we started

The linear SVM problem

1 T A
i, z; max{1 — y;x; w,0} + §||w||§
=

@ The hinge loss is not continuously differentiable!

@ But it is continuous and convex...

.
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Nonsmooth functions

Definition

A function is called nonsmooth if it is not differentiable everywhere.
NB: Nonsmooth # Discontinuous.

Example of nonsmooth functions

o w i |w| from R to R;
o w i ||w|; from R? to R;
o RelLU: w — max{w,0} from RY to R.
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Definition
Let f : R” — R be a convex function. A vector g € R" is called a
subgradient of f at w € R" if

Subgradients for nonsmooth convex problems

Vz e R", f(z) > f(w)+gt(z—w).

The set of all subgradients of f at w is called the subdifferential of f at w,
and denoted by Of (w).
o If f differentiable at w, Of (w) = {Vf(w)};

e 0 € 9f(w) < w minimum of f!

Example: Let f : R — R, f(w) = |w]|.

-1 if w<0
of(w) = 1 if w>0

[-1,1] ifw=0.
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Subdifferential: Illustration

C. W. Royer

-1
1
{ [_17 1]

Optimization for ML

LS g [ Hle At

sk

=y

ift<O
ift >0
if t=0.
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Subgradient method
Iteration for nonsmooth convex f

Wil = Wi — a8y, gy € Of(wy).

@ Depends on the subgradient: a subgradient can be a direction of
increase!

@ «y typically constant or decreasing.
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Subgradient method
Iteration for nonsmooth convex f

Wil = Wi — Qk8 gy € Of(wy).

@ Depends on the subgradient: a subgradient can be a direction of
increase!

@ «y typically constant or decreasing.

Guarantees

Let Wk = —p— ZkK:_ol agwy. Then,
k=0

Flik) - F* <O <\/1R> .

Worst rate than gradient descent but a lot more general!
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© Beyond gradient descent: Regularization
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Back to where we started

The linear SVM problem

1 A

in 13 max{1 — yixTw, 0} + 2 [wli2

Mtglngdn_ 1max{ yiX; w }+2||WH2
=

A

@ The problem is regularized (by a data-independent term);

@ The purpose of regularization is to enforce specific
properties/structure on a solution.

.
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General form of a regularized problem

min  f(w) +  AQ(w)
WERY N~~~ ~——

loss function regularization term

where XA > 0 is called a regularization parameter.

Example: Ridge regularization

|

min f(w) + =||w||3.
min £(w) + 5|3

Interpretations:

o Equivalent to enforcing a constraint on ||w||3 = Zflzl w?;

Penalizes ws with large components;

o
@ The variance of the solution w. r. t. the data is reduced;
(]

The objective function is strongly convex.
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Solving regularized problems
Setup: Composite optimization

minimize f(w) + AQ(w).
weRd

o feCll:

o 2 convex but nonsmooth.

Proximal approach

o Classical optimization paradigm: replace a problem by a sequence of
easier (sub)problems;

@ Exploit smoothness of f, use the structure of Q to solve the
subproblems;

@ Those should be solvable efficiently.
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Proximal Gradient Descent (PGD)

Wii1 = argmin {f(wk) + VF(wi) (W — i) + 5 lw — w3+ )\Q(W)} .

weRd

e If Q@ =0, the solution is wii1 = wi — axVF(wy): This is the
Gradient Descent iteration!

@ In general, the cost of an iteration is 1 gradient call + 1 proximal
subproblem solve.

Properties
@ Complexity bounds exist for nonconvex and mostly for convex f;

@ Stepsize choices can be designed based on those for GD.
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[llustration: ISTA

Sparsity-inducing regularizers

o Want solution w € RY with few nonzero components.

o For linear models, amounts to feature selection. )

A better approach: LASSO regularization
LASSO=Least Absolute Shrinkage and Selection Operator

d
minimize f(w) + A|wlly, [lw = |wl.
weRd =1

@ || - ||1 is convex, continuous, and a norm.

@ Nonsmooth but subgradients can be computed.

@ No close form even for linear regression=- Proximal gradient!
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lllustration: ISTA (2)

@ Solve minimize,, cra f(w) + Al|w||1.

@ Common problem in image processing: Proximal gradient=ISTA.

@ Explicit form of the proximal subproblem solution.
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lllustration: ISTA (2)

@ Solve minimize,, cra f(w) + Al|w||1.

@ Common problem in image processing: Proximal gradient=ISTA.

@ Explicit form of the proximal subproblem solution.

Iteration of ISTA: Iterative Soft-Thresholding Algorithm

Define wy 1 componentwise: for any i € {1,...,d},

[Wk = Oszf(Wk)]i — QA if [Wk = Oszf(Wk)]i > g

Wi — a VE(w)], + oA if [wi — au VE(wy)], < —auch
[(Wiia]; =
0 if [Wk = Oszf(Wk)]’- € [—ak)\,ak)\].
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Optimization problems in ML

@ Common feature: Depend on data.
@ Distinctive features: Convexity, smoothness, regularization. )

Gradient descent

@ The basic block for optimization.

@ Applies to convex and nonconvex functions.

@ Some freedom in the implementation (see lab session).

Beyond gradient descent

@ Nonsmoothness= Subgradient methods!
@ Regularization=> Proximal methods!

e Data dependency? =- See next lecture.
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