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Multi-Query Parametric Problem Governed by PDEs

High-Dimensional Parametric
Discrete Problem PDE Model
Lu; p) = f() ode

U Magnitude

Discrete Solutions u(u) L DI

Model & Solution Database {u(u;)}

Dimensional Reduction: U,

Reduced Parametric Model
Lr(vip) = fr(p), ve€Ur
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Fundamental Ansatz for PDE Solution

o Consider a PDE:

Llu;p) = f(p), vwel, peP,

where:
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Fundamental Ansatz for PDE Solution

o Consider a PDE:

Llu;p) = f(p), vwel, peP,

where:

o L: Differential operator.
e u: Solution in function space U.
o p: Parameter in parameter space P.

@ Linear space approximation:

UT(M) € span{ulaUQa'-'auk} Uk :u(lu’k)a

where {u;}%_, are previously computed solutions (snapshots).
o We have:

u(p) = up(p) =Y ci(p)ui.

i=1
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Reduction of Function Space

o Affine space approximation:

k

u(p) ~ o) + Y i) (us — uo(p)),

i=1

where ug(p) is a reference solution (a lifting of the b.c. for example).
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Reduction of Function Space

o Affine space approximation:

k

u(p) ~ o) + Y i) (us — uo(p)),

i=1

where ug(p) is a reference solution (a lifting of the b.c. for example).
@ Informal notion of reduced function space:
o Construct a reduced space U,. C U, where:

U, ~ span{u,us,...,ug}.
e Solve the reduced problem:

Lr(vip) = fr(), v €U

@ Reduction goal: Retain accuracy while significantly reducing
computational complexity.
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@ Part 1: Constructing the Reduced Space
e Linear approaches:
o Proper Orthogonal Decomposition (POD).
o Singular Value Decomposition (SVD).
o Reduced Basis (RB) methods.
o Non-linear approaches:
o Optimal transportation-based methods.
o Quadratic approximation manifold techniques.
o Part 2: Sampling the Parameter Space
e Uniform sampling for moderate dimensions.
o Latin Hypercube Sampling (LHS) for higher dimensions.
e Adaptive and goal-oriented greedy sampling based on error indicators.

@ Part 3: Solving in the Reduced Space

Interpolation in the parameter space.

pMOR

cMOR

Mention of closure models for non-intrusive reduced-order systems.
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Learning Objectives

By the end of this course, participants should be able to:

@ Understand the fundamental principles of projection-based model
reduction.
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Learning Objectives

By the end of this course, participants should be able to:

@ Understand the fundamental principles of projection-based model
reduction.
@ Learn and apply key mathematical tools:
e Proper Orthogonal Decomposition (POD) and Singular Value
Decomposition (SVD),
o Reduced Basis (RB) methods.
o Construct a pMOR
e Construct a cMOR
o Formulate and solve a simple parametric PDE using reduced-order
models.

@ Understand the links between parameter sampling, accuracy, stability,
and computational efficiency.
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Preliminary Remark

@ Project then Discretize:

o Derive reduced-order equations in continuous form.
o Apply numerical discretization to the reduced equations.
o Advantages:

o Preserves some structure of the original system.
o Easier to derive.

@ Discretize then Project:

o Discretize the full-order model first.
e Apply projection to reduce the system size.
o Advantages:

@ Numerical stability induced by the discretization scheme.
o Consistent with the full-order model.

@ Comparison:

Accuracy and stability vs. intrusivity
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Part 1: Constructing the Reduced Space
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High-Dimensional Model

@ Nonlinear High-Dimensional Model:

dw

5 = fw(t).1), y(t) =g(w(t),?).

@ Initial condition:

@ Variables:

o w € RY: State vector.
e y € R%: Output vector, typically ¢ < N.

@ Function f defines the dynamics.
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Proper Orthogonal Decomposition (POD)

o Consider a fixed initial condition wy € RY

@ Denote the associated state trajectory in the time-interval [0, 7] by

Tw = {w(t)o<t<T

@ The Proper Orthogonal Decomposition (POD) method seeks an
orthonormal basis V € RN*¥ defining a projector II, = VVT of fixed
rank k that minimizes the integrated projection error

i
J(ILy, w) = / Iw(t) — Tyw(r)|3dt
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Let K € RV*N be the real, symmetric, positive, semi-definite matrix
defined as follows

-
K = A% W T
K_/O tyw(t)T dt

Let 5\1 > 5\2 >0 > 5\N > 0 denote the ordered eigenvalues of K and
¢;i € RN, i=1,---, N, denote their associated eigenvectors which are also
referred to as the POD modes

The subspace V = span(qASl, cel (ﬁk) of dimension k& minimizes J(Ily, w).
It is the invariant subspace of K associated with the eigenvalues
N> hg > >y
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Snapshot Method for POD

e Solving the eigenvalue problem K¢; = \;¢; is in general
computationally intractable because:
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Snapshot Method for POD

e Solving the eigenvalue problem K¢; = \;¢; is in general
computationally intractable because:

o The dimension N of the matrix K is usually large
o This matrix is usually dense

o However, the state data is typically available under the form of
discrete "snapshot" vectors

{w(t)}romee

@ In this case, fOT w(t)w(t)T dt can be approximated using a quadrature
rule as follows

where a;, i = 1,..., Nsnap are the quadrature weights
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Snapshot Matrix

@ Define the snapshot matrix S € RV*Nsnap 3s:

S = [\/ole(tl) s aNsnapW(tNSnaP)]

o It follows that:

K =SS’

o Here, K is still a large-scale (N x N) matrix

Angelo lollo Model Reduction CIMPAGHAMMAMET 13 /82



Snapshot Method for POD

o Note that the non-zero eigenvalues of the matrix K = SST € RV*N

are the same as those of the matrix R = ST'S ¢ RVsnap* Nsnap
@ Since usually Ngpap < N, it is more economical to solve instead the
symmetric eigenvalue problem

Ry; = Ahi, i=1,--- aNsnap

@ However, if S is ill-conditioned, R is worse conditioned
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Snapshot Method for POD

e If rank(R) = r, then the first 7 POD modes ¢; are given by

¢Z:\/1A>zswl7 Z.Zlv'”77q
Let ® = [¢1---¢r] and ¥ = [¢hg - - - 0] with

TP =1, — & = SUA~= where

A= [(Am (AO)]

Ry = A\thi, i=1,---, Nonap = UTRY = UISTSy — A
Hence, ®TK® = A~ 20TSTSWA 2 = A2 AUTWA "2 = A

Since the columns of ® are the eigenvectors of K ordered by
decreasing eigenvalues, the optimal orthogonal basis of size k < r is

I

V=[®, P4 [0

|-
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Relationship with Singular Value Decomposition (SVD)

o For a given matrix A € RV*M  there exist orthogonal matrices

U € RV*N and Z € RM*M gych that

A =Uxz"

where UTU =1y, ZTZ =1, and matrix 3 € RY*M has diagonal
entries X;; = o; satisfying o4 > 09 > -+ > Omin(N,M) = 0 and zero
entries elsewhere

o {0} ™M) are the singular values of A

@ Columns of U and Z are left and right singular vectors of A, with
U= [ul---uN] and Z = [Z1~--ZM]
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Schmidt-Eckart-Young-Mirsky Theorem

o Given A € RV*M with N > M, which matrix X € RV*M with
rank(X) = k < r = rank(A) < M minimizes ||A — X||2?
@ Theorem (Schmidt-Eckart-Young-Mirsky):

Ko |A = X]l2 = op11(A), if ok(A) > 0p41(A)

o X = Zle ozl minimizes ||A — X||2, where A = USZT.
@ This minimizer is also the unique solution of the related problem
(Eckart-Young theorem)

T 1/2
i A—X|p= 2
x4 =Xz ( 2 )

i=k+1

@ This result explains the concept of "low-rank" approximation and its
connection with SVD
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Relationship POD-SVD

@ The discretization of the POD by the method of snapshots requires
computing the eigenspectrum of K = SS™

P'KP® = ¢7SST® = A
corresponding to its non-zero eigenvalues
o Link with the SVD of S

S=UxZ" = [U, Uy [20 8] z"

— K=UX?U" and UTKU = »?

— $=U, and A2=3, « A=X?

o Computing the SVD of S is usually preferred since as noted as noted
earlier ro(R) = K2(S)2.
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Greedy Approach for Basis Selection - Reduced Basis

Goal: Select a subset of snapshots to form a reduced basis spanning U,..

Algorithm:

© Initialize the reduced space: U, = {0}.
@ For each iteration:
o Find the parameter u; € P that maximizes the error indicator:

i = A 71/{7‘7
pi = argmax (w(p), Ur)

where typically A(u(y1), Uy) = llu() — Mo (i) e := -
e Enrich the reduced space:

ur — ur U {u(,uz)}

© Stop when A(u(p),U,) < e or the basis reaches the desired size k.
Key Features:
@ Maximizes the worst-case error at each step.

@ Ensures an optimal reduced basis for a given number of functions.
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Non-linear Interpolation
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Kolmogorov Width

Let P be a compact set and ¢ : P — Q be the mapping associating any
z € P to a parametric solution u = ¢(z) € Q under the constraint given by
the PDE:

R(u(z),z) =0, VzeP

The PDE implicitly defines a manifold in the Hilbert space (V.|| - ||), with
imp CV.

Let V,, be an n-dimensional (n < +00) subspace of V.

The Kolmogorov width is defined as:

dy = inf su inf [[v—w
o=, supinf o]

with V,, being a generic n-dimensional subspace of V.
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Preliminary notions

We are interested in a continuous medium that occupies the space € in
the reference (or initial) configuration and € in the deformed configuration
at time . All the domains considered hereafter are included in R? or R3.

Angelo lollo Model Reduction CIMPAGHAMMAMET 24 /82
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We are interested in a continuous medium that occupies the space € in
the reference (or initial) configuration and € in the deformed configuration
at time . All the domains considered hereafter are included in R? or R3.
We define the direct characteristics X

X:Q()X[O,T] — Qt
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Preliminary notions

We are interested in a continuous medium that occupies the space € in
the reference (or initial) configuration and € in the deformed configuration
at time . All the domains considered hereafter are included in R? or R3.
We define the direct characteristics X

X:Q()X[O,T] — Qt
&1 = X(1)

The "velocity" field is given by

u:Qx[0,7] — R?
(z,t) —  u(x,t)
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Eulerian & Lagrangian formulation

The Eulerian description consists of working with quantities on the
deformed configuration €2 (in the simplest case, the velocity field u(z,t)).
The Lagrangian description consists of working with quantities on the
reference configuration Qg (the characteristics X (,t)).
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Eulerian & Lagrangian formulation

The Eulerian description consists of working with quantities on the
deformed configuration €2 (in the simplest case, the velocity field u(z,t)).
The Lagrangian description consists of working with quantities on the
reference configuration Qg (the characteristics X (,t)).

The two formulations are equivalent by virtue of the relation

0X
E(&v t) = U(X(Ea t)? t)

which is complemented with the initial condition X (£,0) = &.
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Diffeomorphism

We assume throughout that the deformations X (-, ) are smooth, bijective
mappings between manifolds where both the map and its inverse are
smooth, and do not change the orientation, that is

det(V§X(f, t)) >0
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Diffeomorphism

We assume throughout that the deformations X (-, ) are smooth, bijective
mappings between manifolds where both the map and its inverse are
smooth, and do not change the orientation, that is

det(V§X(f, t)) >0

Under these hypothesis, for volumes, the change of variable z = X (£, ¢)
allows us to revert to the reference configuration

/ fatyde = [ FX(E8), 1) det(VeX (€,1)) de
X (Q0,6)=0 Qo
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Reynolds formula and conservation of mass

Reynolds formula for volumes is written as

% < 0 f(ac,t)da:) :/Qt (fe +div(fu)) dz

Angelo lollo Model Reduction CIMPAGHAMMAMET 27 /82



Reynolds formula and conservation of mass

Reynolds formula for volumes is written as

% < Qtf(ac,t)da:) :/Qt (fe +div(fu)) dz

Conservation of Mass in Eulerian Form
The conservation of mass states that the mass variation of a volume €; is

independent of time
d
— t)ydr | =
pr (/Qtp(x, ) m’) 0

Using Reynolds formula with f = p, we obtain the conservation of mass in
the deformed configuration

‘pt + div(pu) = 0‘
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Conservation of mass in Lagrangian form

We simply revert to the reference configuration

% (/QO p(X(&1),1) det(v§X(§,t))dg> =0

which can be written, since X (&,0) =¢,

p(X(’Ea t)? t) det(VgX(f, t)) = /00(5)
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Inverse mapping

We introduce the backward characteristics Y’

Y:QtX[O,T] — QO
(z,t) = Y(z,)
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Inverse mapping

We introduce the backward characteristics Y’

Y:QtX[O,T] — QO
(z,t) = Y(z,)

These functions are related to the direct characteristics X by the relations

X(Y(z,t),t) == Y(X(&1),t) =¢
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Inverse mapping

We introduce the backward characteristics Y’

Y x[0,T] — Qo
(z,1) = Y(z,1)

These functions are related to the direct characteristics X by the relations
X(Y(z,t),t)=x YV(X(&,1),t) =¢

By derivation of the first equation with respect to x and the second with
respect to ¢:

[VeX(&,1)] = [VoY (2, 0)] 7 Vit (u-V)Y =0
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Inverse mapping

We introduce the backward characteristics Y’

Y x[0,T] — Qo
(z,1) = Y(z,1)

These functions are related to the direct characteristics X by the relations

X(Y(z,t),t) == Y(X(&1),t)=¢

By derivation of the first equation with respect to x and the second with
respect to ¢:

[VeX (& 0)] = [VoY (2, 0)] 7 Yi+(u-V)Y =0
...and mass conservation with respect to Y

p(z,t) = det(VyY (z,1))p(Y (2, 1),0)
where p(Y(x,t),0) = po(Y (z,1))
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Optimal transportation: a crush primer

We introduce the probability measures Py, P; with pdfs pg, p1 and
cumulative distribution functions Fy, F,

1 Ty
Fi(x) = / / pi(z')dz', i=0,1, z€R"
—o0 —0o0
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Optimal transportation: a crush primer

We introduce the probability measures Py, P; with pdfs pg, p1 and
cumulative distribution functions Fy, F,

T1 Tn

Fi(x) :/ / pi(z')dx', i=0,1, x € R"
We assume that pg, p1 have finite second-order moments. We say that
X : R™ — R" transports Py to Py if P1(B) = Po(X ~(B)) for all

IP;-measurable sets B, with Y/(B) = X 1(B) := {¢ e R" : X(¢) € B},
and we use notation P; = X4 Py.
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Monge problem

Note that the latter implies local mass conservation

po(€) = p1(X(£))detVe X (€), V&R,

or equivalently
Fo(§) = Fi(X (), VEeR™
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Monge problem

Note that the latter implies local mass conservation

po(€) = p1(X(£))detVe X (€), V&R,

or equivalently
Fo(§) = Fi(X (), VEeR™

With this notation, we can introduce the Monge optimal transport problem
as follows: find X : R™® — R™ to minimize

M) = [ 1% = €l oe) de.

under the constraint of mass conservation.
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Main result (Y. Brenier)

There exists a unique convex potential ¥(§): R™ — R, such that the
mapping X (§) = V¥ minimizes 1(X; po, p1)
subject to

po(€) = p1 (VW) det (V2U).
Let J be the minimum of I(X; po, p1) subject to mass conservation.
Existence and uniqueness of ¥ implies that

Wa(po, p1) = V'J

is a distance function between probability measures; W5 is known as the
Wasserstein metric.
The Wasserstein distance is a rigorous proxy of the notion of displacement.
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Displacement (McCann) interpolation

We introduce the displacement (or geodesic) interpolant p between pg
and p; such that

Py (&) = p1(T(s,6)) det (VT (s,€)),
and the mapping T'(s,€) : [0,1] x R™ — R" is defined as
T(s,§) = (1—5)&+ sVeU(E).

Note that pf = pg for s = 0 and pf = p; for s = 1.
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Reverse displacement interpolation

We further introduce the inverse map W : Ry x R™ — R™ such that
W(Sv ) :T_l(sv ')’ Vse [07 1]’

and the reverse McCann interpolation, which is obtained by inverting the
role of pg and p1:

P (&) = pr(W (s, 2)) det (VW (s,)).
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Convex interpolation

Linear models can be interpreted as a generalization of convex
interpolations of two snapshots ug, u1, that is

u(s,x) = (1 —s)up(z) + sui(z) sel0,1],z € Q.

The use of linear methods relies on the assumption that the problem of
interest exhibits a global nature.

Angelo lollo Model Reduction CIMPAGHAMMAMET 35/82



Convex Displacement Interpolation (CDI)

@ We define the nonlinear interpolation:

u(s,x) = (1 —s)ugo Tgfl(s,x) + suj o ngl(l —s,x)

where s € [0,1],z € Q.
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Convex Displacement Interpolation (CDI)

@ We define the nonlinear interpolation:

u(s,x) = (1 —s)ugo Tgfl(s,x) + suj o ngl(l —s,x)

where s € [0,1],z € Q.

o We refer to u as convex displacement interpolation due to the analogy
with displacement interpolation and the more elementary convex
interpolation.
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Convex Displacement Interpolation (CDI)

@ We define the nonlinear interpolation:

u(s,x) = (1 —s)ugo Tgfl(s,x) + suj o ngl(l —s,x)

where s € [0,1],z € Q.

o We refer to u as convex displacement interpolation due to the analogy

with displacement interpolation and the more elementary convex
interpolation.

@ In several relevant PDE problems this formula is an exact interpolation with

respect to the parameter using the exact OT mapping
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Convex Displacement Interpolation (CDI) - Linearisation

@ We linearize T~ !(s,-) and W~1(s,-)

Ty (s, ) = (1= 8)T7H0,) + 5T (1) = (1= 5) - Yy (1) = Wy(s, ),

Wy l(s,) = (L= )Wt (0,) + sW (1) = (1= ) - +5X () = Ty(s,)
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Convex Displacement Interpolation (CDI) - Linearisation

@ We linearize T~ !(s,-) and W~1(s,-)

Ty (s, ) = (1= 8)T7H0,) + 5T (1) = (1= 5) - Yy (1) = Wy(s, ),

W_l(sv ) =~ (1 - S)Wg_1(07 ) + ng—l(L ) = (1 - S) : +3X(') = Tg(sv )

@ The linearised formula is then:

u(s,x) = (1 —s)ugo Wy(s,z) + sujoTy(1l —s,x),
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WL A

400

Remarks:
© CDI is symmetric
@ CDl includes convex interpolation (e.g. T'(1,£) = &)
© CDI respects the maximum principle

U(s,z) <max(Up(z),U1(T4(1,2))) = max(Uy(W (1, z)),Ui(x))
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OT of multivariate normal density distributions

We define the normal density distribution A with mean p € R™ and
symmetric positive definite covariance ¥ € R™**™:
1

Nans) = — L e S,
1 2) = 2 (5172
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OT of multivariate normal density distributions

We define the normal density distribution A with mean p € R™ and
symmetric positive definite covariance ¥ € R™**™:

1 1 Tewe_1
N(z; 1, %) = ez (@—p) T (z—p)
1 2) = 2 (5172

Given the densities 7 = N (+; po, 20) and v = N (+; u1, 1), we find that
the displacement interpolant N, is Gaussian with mean and covariance
given by

B 12\2
s = (1=5) pots 1, Ls =, 1/2 <(1 —-5)Xo+s <25/2212(1)/2> > 2o

for all s € [0, 1].
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OT of multivariate normal density distributions

The forward mapping T is also available in closed form:
_ /2 __
T(s,6) = (1=8)& +s (ul +35 2 (mPmmy) w6 - Mo)) :

Finally, the Wasserstein distance between Gaussian density distributions is
given by:

Wa (N(:U@aEO)’N(Nl?El)) =

1/2
- ¢ a1 = pol3 + Tx (zo + 3 -2 (257w ?) )
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Gaussian model of coherent structures

@ Given the field U : R® — R? and the scalar testing function
T(U):R™ - R, the set

Cr(U):={zeR" : T(z;U) > 0}

identifies coherent structures associated with the criterion T
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Gaussian model of coherent structures

@ Given the field U : R® — R? and the scalar testing function
T(U):R™ - R, the set

Cr(U):={zeR" : T(z;U) > 0}
identifies coherent structures associated with the criterion T

@ For example, if U is a velocity field and T (z;U) = ||V x U(z)||2 — 7 with
7> 0, Cr(U) identifies the region where enstrophy exceeds a threshold 7
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Gaussian model of coherent structures

@ Given the field U : R® — R? and the scalar testing function
T(U):R™ - R, the set

Cr(U):={zeR" : T(z;U) > 0}
identifies coherent structures associated with the criterion T

@ For example, if U is a velocity field and T (z;U) = ||V x U(z)||2 — 7 with
7> 0, Cr(U) identifies the region where enstrophy exceeds a threshold 7

@ Objective: fit a Gaussian probability density function ¢(z; u, ) to Cr(U)

1 i) T (e
o(x; 1, X) = (27r)"/2|2\1/2 ezlem o=,
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Gaussian model of coherent structures

@ Given the field U : R® — R? and the scalar testing function
T(;U): R™ — R, the set
Cr(U):={zeR" : T(z;U) > 0}
identifies coherent structures associated with the criterion T

@ For example, if U is a velocity field and T (z;U) = ||V x U(z)||2 — 7 with
7> 0, Cr(U) identifies the region where enstrophy exceeds a threshold 7

@ Objective: fit a Gaussian probability density function ¢(z; u, ) to Cr(U)
1

(s u,2) = ———7

(2m)n/2 |52

@ Define a finite-dimensional discretization of the domain of interest

Py = {xl}fih{ and we define

e 3(@—p) TS (@—p)

Pt .= P T(x:U 0} = Nh+f
e = {7 € Pur : T(2;U) > 0} = {y;};2
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Gaussian model of coherent structures

@ Given the field U : R® — R? and the scalar testing function
T(;U): R™ — R, the set
Cr(U):={zeR" : T(z;U) > 0}
identifies coherent structures associated with the criterion T

@ For example, if U is a velocity field and T (z;U) = ||V x U(z)||2 — 7 with
7> 0, Cr(U) identifies the region where enstrophy exceeds a threshold 7

@ Objective: fit a Gaussian probability density function ¢(z; u, ) to Cr(U)

oz p, X) = L

e 3(@—p) TS (@—p)
(2m)n/2 5|2

@ Define a finite-dimensional discretization of the domain of interest

Py = {xl}fih{ and we define

Pt .= P T(x:U 0} = Nh+f
e = {7 € Pur : T(2;U) > 0} = {y;};2

© Assume that {y;}; are IID realizations of a multivariate Gaussian distribution
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Gaussian model of coherent structures

@ Estimate mean and variance by MLE:

Nt

1 hf
/Lmlc[U] = 5 Yj,
N ;1 ’
1 N
Emle[Uv] = F Z (yj — Mmle [U]) (yj — Hmle [U])T
hf j=1
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Gaussian model of coherent structures

@ Estimate mean and variance by MLE:

Nt

1 hf
/Lmlc[U] = 5 Yj,
N ;1 ’
1 N
Emle[U] = F Z (yj — Mmle [U]) (yj — Hmle [U])T
hf j=1

@ Given the Gaussian densities m = @(-; o, Xo) and v = ¢(+; p1,31), the

displacement interpolant ¢, is Gaussian for all s € [0, 1] with mean and
covariance given by

_ 12\?
js = (1=8) po+s p1, S = ¥g /2 <(1 —§)To+s (23/2212}/2) > Y
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Gaussian model of coherent structures

@ Estimate mean and variance by MLE:

+
Nh f

1
HMmle [U] = F Z Yj,
hf j=1

N+
1 hf
SmelU] = < D (05— tte[U]) (0 = pme[U])"
hf j=1
@ Given the Gaussian densities m = @(-; o, Xo) and v = ¢(+; p1,31), the

displacement interpolant ¢, is Gaussian for all s € [0, 1] with mean and
covariance given by

_ 12\?
js = (1=8) po+s p1, S = ¥g /2 <(1 —§)To+s (23/22123/2) > Y

@ The forward and backward mappings T, and W, are hence available in
closed form:

. V2
Ty(s,€) = (1—8)E+s <u1 + 55 (5P ) T mg A (6 - o)
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Generalization: notation

@ 4u: the vector of model parameters in the region P C R?

Angelo lollo Model Reduction CIMPAGHAMMAMET 43 /82



Generalization: notation

@ 4u: the vector of model parameters in the region P C R?

e Q C R is the open computational domain
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Generalization: notation

@ 4u: the vector of model parameters in the region P C R?
e Q C R is the open computational domain
o the parametric field of interest u, : Q x P — R
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Generalization: notation

@ 4u: the vector of model parameters in the region P C R?
e Q C R is the open computational domain

o the parametric field of interest u, : Q x P — R

o the solution manifold M = {u, :=u(-; ) : p € P}
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Generalization: notation

w: the vector of model parameters in the region P C R?
Q C R? is the open computational domain

the parametric field of interest u,, : @ x P — RP

the solution manifold M = {u, :=u(-;u) : p € P}

the training set Pipain = {p}103" C P
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Generalization: notation

w: the vector of model parameters in the region P C R?
Q C R? is the open computational domain

the parametric field of interest u,, : @ x P — RP

the solution manifold M = {u, :=u(-;u) : p € P}

the training set Pipain = {p}103" C P

the dataset of solutions Dyyain = {uy : 1t € Pirain}
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Generalization: notation

w: the vector of model parameters in the region P C R?
Q C R? is the open computational domain

the parametric field of interest u,, : @ x P — RP

the solution manifold M = {u, :=u(-;u) : p € P}

the training set Pipain = {p}103" C P

the dataset of solutions Dyyain = {uy : 1t € Pirain}

Set of  nearest neighbors to p: Phn = {v'}*_; C Pirain
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Generalization: notation

w: the vector of model parameters in the region P C R?
Q C R? is the open computational domain

the parametric field of interest u,, : @ x P — RP

the solution manifold M = {u, :=u(-;u) : p € P}

the training set Pipain = {p}103" C P

the dataset of solutions Dyyain = {uy : 1t € Pirain}

Set of  nearest neighbors to p: Phn = {v'}*_; C Pirain

CDI is now:

Z wy iy, where u, =u, 0 ®,,

vePL,
for a proper choice of the weights {w!, : v € Pi,} and mappings ®, as
found next.
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Generalization: Algorithm

Algorithm : offline/online decomposition.

Offline stage performed once
1: Generate the dataset Diyain = {uy : tt € Pirain}-

2: Identify the point clouds {X;* : 1t € Porain }-

3. Define the template set X™f and the sorted point clouds {X,:p e
Ptrain}-
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Generalization: Algorithm

Algorithm : offline/online decomposition.

Offline stage performed once

1: Generate the dataset Diyain = {uy : tt € Pirain}-
2: Identify the point clouds { X : 1t € Pyyain}-

3. Define the template set X™f and the sorted point clouds {X,:p e
Ptrain}-

Online stage performed for any u € P

1. Estimate the new points )?u = {Zi Y.
2: Select the neighboring parameters Py, = {1 ¥ 1 C Pirain-

3: Compute the mappings ®, based on )?# and X, for all v € PL,.

|2 RM
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Sensor (or Feature) Selection

@ Define a problem-dependent scalar testing function 7 & consider a
discrete set of test points Py C €.
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Sensor (or Feature) Selection

@ Define a problem-dependent scalar testing function 7 & consider a
discrete set of test points Py C €.
e Compute the following for all p € Pirain:

X {x € Pur: T(x,ull) > tu}

The threshold t,, is chosen equal to the 1, quantile over the training set:

t, = quantile ({T(w,ul,}f) gRAS th},%hr)
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Sensor (or Feature) Selection

@ Define a problem-dependent scalar testing function 7 & consider a
discrete set of test points Py C €.
e Compute the following for all p € Pirain:

X {x € Pur: T(x,ull) > tu}

The threshold t,, is chosen equal to the 1, quantile over the training set:

t, = quantile ({T(w,ul,}f) gRAS th},%hr)

@ T for compressible flow problems, as seen, Ducros sensor.
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Sensor (or Feature) Selection

@ Define a problem-dependent scalar testing function 7 & consider a
discrete set of test points Py C €.
e Compute the following for all p € Pirain:

X {x € Pur: T(x,ull) > tu}

The threshold t,, is chosen equal to the 1, quantile over the training set:

t, = quantile ({T(w,ul,}f) gRAS th},%hr)

@ T for compressible flow problems, as seen, Ducros sensor.
@ For 2D recirculating channel flows, we rely on the isolines of the

streamfunction:
T2

Vo=l = [ (o), ds

Ybtm (1)
where ypim(21) = inf{xs : [z1, 22] € Q}; then, T(x,uﬁf) =V, (z)
and t, = 0; that is,

Angelo lollo - Model Reduction "~ CIMPA@HAMMAMET 45 /82



Point Cloud Matching

@ The raw point clouds X* are typically not of the same size and are
not sorted.

o Point Set Registration (PSR) is used to find matched point clouds:
£
X, = PSR (Xre ,X;aW)

This involves finding a map 7' : R? — R? that minimizes the distance
between point clouds.

The distance is defined as:

dist (Y, T(X)) = i -T
st (. 700) = ma (i~ 7o)l )
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Gaussian-based PSR

o Gaussian-based PSR utilizes maximum likelihood estimation (MLE) to

estimate the mean and covariance matrix:
1 Y 1
px = NZ;% Yx = NZ;(%'_NX)(%'—NX)T
1= 1=

@ The optimal transport map Tx y is defined as:

_ 12 __
Ty (@) = py + 5572 (S5 =) 7 55 (@ - px)

@ The deformed point cloud X is then defined as
X = {fz = TX,Y(xi)}ﬁil-
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Regression of Sorted Point Clouds

@ For approximating the mapping u — )?u, Radial Basis Function (RBF)
regression is used.

@ Proper Orthogonal Decomposition (POD) is then applied for an
equivalent representation:

M .
X =Y Zif
=1

e Here, Z1,...,Zy € RN*? are the basis vectors and
Bi,....BM R are the coefficients.

Ntrain
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Regression of Sorted Point Clouds

@ For approximating the mapping u — )?#, Radial Basis Function (RBF)
regression is used.

@ Proper Orthogonal Decomposition (POD) is then applied for an
equivalent representation:

M .
X =Y Zif
=1

e Here, Z1,...,Zy € RN*? are the basis vectors and
Bl,....BM €R are the coefficients.
@ The coefficients 3% are classically estimated by minimizing:

TNtrain

N ) i\ 2
B = arg min AIBIE, + ; (ﬁ(#’“) - 5k>

$¢4 denotes the native space associated with the kernel ¢ and A > 0 is a
regularization coefficient.
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Regression of Sorted Point Clouds

@ For approximating the mapping u — )?#, Radial Basis Function (RBF)
regression is used.

@ Proper Orthogonal Decomposition (POD) is then applied for an
equivalent representation:

M .
X =Y Zif
=1

e Here, Z1,...,Zy € RN*? are the basis vectors and
Bl,....BM €R are the coefficients.
@ The coefficients 3% are classically estimated by minimizing:

TNtrain

N ) i\ 2
B = arg min AIBIE, + ; (ﬁ(#’“) - 5k>

$¢4 denotes the native space associated with the kernel ¢ and A > 0 is a
regularization coefficient.

@ We finally have the parameterized new points estimation:
M
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Choice of Nearest Neighbors

1 ..., " that minimize the Euclidean distance to

@ Select parameters v
%

dist(p, v) = [l = vll2

@ The weights for the neighbors are then defined as:
W= wlyi —v' 1

W, = ———~
P e T st ()

@ Inverse distance weighting (IDW) is used with p = 2.
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Optimization-based registration (T. Taddei et al.)

An alternative approach consists in formulating the problem of registration
as a minimization problem of the form

N
. 1 £y o~ 2
B2, 2Pl (@),

that can be solved using a gradient-based (quasi-Newton) method.
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Optimization-based registration (T. Taddei et al.)

An alternative approach consists in formulating the problem of registration
as a minimization problem of the form

5 + B(D),

N
1
2, v 2 106~ Fu

that can be solved using a gradient-based (quasi-Newton) method.
The optimization statement depends on the choice of the penalty term R
and of the search space Wq: the former should enforce

o local bijectivity det(V®) > 0

@ promote the smoothness (in a Sobolev sense)
e &(0) =0
o
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Nonlinear Approximation Manifold (C. Farhat et al.)

@ Nonlinear approximation manifold generated by a RB and an
ANN

U = Uef + Vq +VN(Q)
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Nonlinear Approximation Manifold (C. Farhat et al.)

@ Nonlinear approximation manifold generated by a RB and an
ANN
U = Uref + Vq +VN(Q)

e V € RVX" is constructed using the first n < N columns of U

o V € RVX™ is constructed using a subset of the next @ << N columns
of U;and m > n

o V and V satisfy the orthogonality properties

VIV=1, VV=I, VIV=0 V V=0
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Nonlinear Approximation Manifold (C. Farhat et al.)

@ Nonlinear approximation manifold generated by a RB and an
ANN

U = Uef + Vq +VN(Q)

e V € RVX" is constructed using the first n < N columns of U

o V € RVX™ is constructed using a subset of the next @ << N columns
of U;and m > n

o V and V satisfy the orthogonality properties

VIV=1, VV=I, VIV=0 V V=0

o N is an ANN representing a map R™ — R™ whose size nann scales
withm < N
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Offline Training of the ANN Representing the Map f(q)

@ Let N(q;7) be the ANN representing the map f(q) : R — R", where
the vector-valued hyperparameter v € R™ANN
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Offline Training of the ANN Representing the Map f(q)

@ Let N(q;7) be the ANN representing the map f(q) : R — R", where
the vector-valued hyperparameter v € R™ANN
e Construct N (g;~y) such that ideally

u’L:uTef—’—VQZ—i_VN(qufy): Z.:17”'7]\[9
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Offline Training of the ANN Representing the Map f(q)

@ Let N(q;7) be the ANN representing the map f(q) : R — R", where
the vector-valued hyperparameter v € R™ANN
e Construct N (g;~y) such that ideally

u’L:uTef—’—VQZ—i_VN(qufy): Z.:17”'7]\[9
e From the above and the orthogonality properties of V and V, it

follows that

g =V (u; — upep) and N(gi;7v) =g, i=1,---,Ns
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Offline Training of the ANN Representing the Map f(q)

@ Let N(q;7) be the ANN representing the map f(q) : R — R", where
the vector-valued hyperparameter v € R™ANN
e Construct N (g;~y) such that ideally

u’L:uTef—’—VQZ—i_VN(qufy): Z.:17”'7]\[9

e From the above and the orthogonality properties of V and V, it
follows that

g =V (u; — upep) and N(gi;7v) =g, i=1,---,Ns

@ Hence

q (input) — N(q;7) — 7 (output)
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Offline Training of the ANN Representing the Map f(q)

@ Let N(q;7) be the ANN representing the map f(q) : R — R", where
the vector-valued hyperparameter v € R™ANN
e Construct N (g;~y) such that ideally

uZ:uT6f+VQZ+VN(QZ77)7 Z.:17”'7]\[9

e From the above and the orthogonality properties of V and V, it
follows that

g =V (u; — upep) and N(gi;7v) =g, i=1,---,Ns

@ Hence
q (input) — N(g;7) — q (output)

Nt'rmln

(C]i — N(g;; ’7/))2

y = arg min
4 train i—

Angelo lollo Model Reduction CIMPAGHAMMAMET 52 /82



Part 2: Sampling the Parameter Space
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Parameter Sample Selection for Computing Snapshots

e How one chooses the s parameter samples i, ..., u* where to
compute the snapshots {w(u!), ..., w(u®)}?
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e How one chooses the s parameter samples i, ..., u* where to
compute the snapshots {w(u!), ..., w(u®)}?
o The location of the samples in the parameter space will determine the

accuracy of the resulting global ROM in the entire parameter domain
D C R4
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Parameter Sample Selection for Computing Snapshots

e How one chooses the s parameter samples i, ..., u* where to
compute the snapshots {w(u!), ..., w(u®)}?
o The location of the samples in the parameter space will determine the
accuracy of the resulting global ROM in the entire parameter domain
D cC R?
@ Possible approaches:

e Uniform sampling for parameter spaces of moderate dimensions and
moderately computationally intensive High-Dimensional Models
(HDMs)
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D C R4

@ Possible approaches:

e Uniform sampling for parameter spaces of moderate dimensions and
moderately computationally intensive High-Dimensional Models
(HDMs)

e Latin Hypercube Sampling (LHS) for higher-dimensional parameter
spaces and moderately computationally intensive HDMs
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Parameter Sample Selection for Computing Snapshots

e How one chooses the s parameter samples i, ..., u* where to
compute the snapshots {w(u!), ..., w(u®)}?
o The location of the samples in the parameter space will determine the

accuracy of the resulting global ROM in the entire parameter domain
D C R4
@ Possible approaches:

e Uniform sampling for parameter spaces of moderate dimensions and
moderately computationally intensive High-Dimensional Models
(HDMs)

e Latin Hypercube Sampling (LHS) for higher-dimensional parameter
spaces and moderately computationally intensive HDMs

o Adaptive, goal-oriented, greedy sampling that exploits an error
indicator to focus on the PROM accuracy, for higher-dimensional
parameter spaces and computationally intensive HDMs
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Latin Hypercube Sampling (LHS)

Key ldea:
@ Divide each parameter range into M non-overlapping intervals of
equal probability.

Algorithm:
© For each parameter y; € [u™", ™3], 1 < i < d, divide the range into
M intervals:

max

it = g < << =

@ Randomly sample one value from each interval.
© Combine these samples randomly across all dimensions to generate M
points:
AN NN 3
Remarks:
@ M independent of the number of dimensions of the parameter space.
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Algorithm:
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Latin Hypercube Sampling (LHS)

Key ldea:
@ Divide each parameter range into M non-overlapping intervals of
equal probability.
@ Sample exactly one point from each interval for each parameter.
@ Ensure no two samples occupy the same interval along any dimension.
Algorithm:
© For each parameter y; € [u™", ™3], 1 < i < d, divide the range into
M intervals:

min max

it = g < << =
@ Randomly sample one value from each interval.
© Combine these samples randomly across all dimensions to generate M
points:
AN NN 3
Remarks:
@ M independent of the number of dimensions of the parameter space.

Angelo lollo Model Reduction CIMPAGHAMMAMET 55 /82



Greedy approach

o Ideally, one can build a ROM progressively and update it (increase its
dimension) by considering additional samples 1(Y) and corresponding
solution snapshots at the locations of the parameter space where the
current ROM is the most inaccurate:

f= £ = -V
1 argglgg!! proM (1) | argrlfleagHW(u) a(w)]|
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@ But the cost of obtaining w(x) can be high = eventually an
intractable approach
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Greedy approach

o Ideally, one can build a ROM progressively and update it (increase its
dimension) by considering additional samples 1(Y) and corresponding
solution snapshots at the locations of the parameter space where the
current ROM is the most inaccurate:

f= £ = -V
1 argglgg!! proM (1) | argrlfleagHW(u) a(w)]|

@ q(u) can be efficiently computed

@ But the cost of obtaining w(x) can be high = eventually an
intractable approach

@ Idea: rely on an economical a posteriori error estimator/indicator
o Error indicator based on the norm of the (affordable) residual

lr(wll = [1F (Va(u); w
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Greedy approach

Ideally, one can build a ROM progressively and update it (increase its
dimension) by considering additional samples 1(Y) and corresponding

solution snapshots at the locations of the parameter space where the
current ROM is the most inaccurate:

f= £ = -V
1 argglgg!! proM (1) | argrlfleagHW(u) a(w)]|

q(p) can be efficiently computed

But the cost of obtaining w(u) can be high = eventually an

intractable approach

Idea: rely on an economical a posteriori error estimator/indicator
o Error indicator based on the norm of the (affordable) residual

lr(wll = [1F (Va(u); w

For this purpose, D is typically replaced by a large discrete set of
candidate parameters {u*!, ... u*} C D
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Greedy Procedure Based on Residual Norm

Algorithm Greedy Sampling Algorithm

. Randomly select a first sample p!
2: Solve the HDM-based problem

[ay

f(w(ph); ') =0
3: Build a corresponding ROB V/
4. fori=2,...do
5: Solve

p =arg  max |r(p)|
pe{p*) - u*e}

Solve the HDM-based problem f (w(u); u*) =0
Build a ROB V based on the snapshots (or in this case, samples)

oo

{w(ul)v U 7w(:ui)}
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Part 3: Solving in the Reduced Space
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Response Surface
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Response Surface Model Reduction

@ Approximate the system response (e.g. RB latent variables) using a

surrogate model:
n

q(p) =) cirilp),

i=1
where k;(p) are basis functions, and ¢; are coefficients. Both depend
on the parameter space sampling.
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i=1
where k;(p) are basis functions, and ¢; are coefficients. Both depend
on the parameter space sampling.
@ Common basis functions:
e Polynomial (e.g., linear, quadratic).

Angelo lollo Model Reduction CIMPAGHAMMAMET 60 /82



Response Surface Model Reduction

@ Approximate the system response (e.g. RB latent variables) using a
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Response Surface Model Reduction

@ Approximate the system response (e.g. RB latent variables) using a

surrogate model:
n

() = ciri(p),
i=1
where k;(p) are basis functions, and ¢; are coefficients. Both depend
on the parameter space sampling.
@ Common basis functions:

e Polynomial (e.g., linear, quadratic).
o Radial basis functions.

@ Steps:

@ Sample the parameter space, i.e., chose pi1, ..., tisnap-
@ Evaluate the high-fidelity model at sample points.
© Fit the surrogate model to the sampled data.
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Projection-based MOR

Angelo lollo Model Reduction CIMPAGHAMMAMET 61 /82



High-Dimensional Model

@ Nonlinear High-Dimensional Model:

dw

5 = fw(t).1), y(t) =g(w(t),?).

@ Initial condition:

@ Variables:

o w € RY: State vector.
e y € R%: Output vector, typically ¢ < N.

@ Function f defines the dynamics.
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Projection-based Reduced-Order Model (PROM)

@ The goal is to construct a Projection-based Reduced-Order Model

(PROM):
M) = a0,
y(t) = gr(a(t),t)
@ where:

o q € R*: Vector of reduced-order state variables, k < N
o y € R%: Vector of output variables
o f.(-,-) € R*: reduced dynamics
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Residual of the model

o The residual r(t) € RY is introduced by approximating w(t) as Vq(t),
where V € RV*F is the matrix whose columns are the POD modes:

V%‘j(t) = F(Vq(t),t) +r(t) <= r(t) = v%‘;‘(t) — £(Vq(t),t)

@ Constrain this residual to be orthogonal to a subspace W defined by a
test basis W € RV** — that is, compute q(t) such that

WTr(t) =0

@ This leads to the governing equations of the Petrov-Galerkin PROM

WTVCCZT?(t) = WTt(Vq(t), 1)

o If W =V the projection method is called a Galerkin PROM
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Characterizing the Error of PROM Solutions

@ Error of the solution computed using a PROM relative to the solution
obtained using the HDM:

Eprom(t) = w(t) — w(t) = w(t) — Vq(t)
@ Assume a Galerkin projection and an associated orthogonal basis V

@ The error vector can be decomposed into two orthogonal components:

EPROM (t) = W(t) — va(t) + va(t) — Vq(t)
= (Iy ~Iv)w(t) + V (VIw(t) - q(t))

=E&EL(t)+Ev(t)
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Error Components in PROM

@ Error component orthogonal to V:

Evi(t) = Iy —Tv)w(t)
o Interpretation: The exact trajectory does not strictly belong to
range(V) = projection error

@ Error component parallel to V:

Ev(t) = V(VTw(t) —q(t))

o Interpretation: An "equivalent" but different dynamical system is
solved = modeling error

@ Sometime &1 (t) can be computed without executing the PROM and
therefore can provide an a priori error estimate
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Orthogonal Galerkin Projection and Error ODE

o Consider the case of a Galerkin projection
@ One can derive an ODE governing the behavior of the error
component lying in V in terms of that lying in V*

@ In the case of an autonomous linear system

dw
dt
the error ODE has the simple form

(t) = Aw(t)

d&v
dt
where &1 (t) acts as a forcing term.

(t) = VVTA (Ev(t) + Ev. (1) = TIVA (Ev(t) + Ev- (1))
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Linear Error ODE Solution

The solution of the ODE is:
t
Ev(t) = VALE(0) + / SVACIII ey (7) dr.
0

For &,. = 0, we have the energy estimate of the homogeneous
solution:

v ()13 = Ev(0)TeMVA telvAtey ().
Bounds:
o Define M(t) = e(IlvA) TtellvAL
o Energy satisfies:

IEv ()3 < lle™ A3 | Ev(0)II3,

where [|eTVAY12 = X\ (M(2)) and Amax is the largest eigenvalue of
M(t).
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Energy of the Inhomogeneous Solution

For &1 # 0, we have

t t
H /0 Ay () dr < sup [ ACTy /0 |Evs (7)ll2dr
7€]0,

Energy Estimate:

t
[Ev ()2 < ChllEv(0)]]2 + 02/ |Ev2(T)l2dT,
0

where:
o C1 = [le"VAY

o Cy = sup, ¢y [le™VAET

C1 and C5 are can be bounded by a function of ¢ and the eigenvalues of
IIvA.
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Collocated MOR
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From PDE to ODE: Spatial Semidiscretization

PDE:
O b L) = Ftp), (e, 0:) = woe: ),
where:
e w(x,t;p): Solution in space x € €2 and time ¢ > 0 for parameter
weP.

e L(w;p): Spatial differential operator.
o f(z,t;u): Source term.

Spatial Semidiscretization: Let ) be a computational domain defined as:

Q= J Qi with S ={T%},
Q,eS

where {T°} represents a set of non-intersecting polytopes such that:
QNQ; =0 fori#j, and U Q; =
O, eT
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Quadrature rule and Weighted Scalar Product

Definition:
@ Let the space discretization of two scalar functions v and v defined
over over ) be u,v € RV:

T

u = [ug,ug,...,uy]", v= [Ul,UQ,...,’UN]T.

Weighted Discrete Scalar Product:

N
/ uvdr =~ (u,v)p = u'Dv = Zguivi,
Q ;
=1

where:
o D € RV*N s a diagonal weight matrix :

D = diag(C1(21),2(22), ..., (v (), ¢ > 0.

@ (;: weights related to quadrature rules and the grid.
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Projection onto Reduced Space by Hyper-Reduction

Key ldea: Instead of q(t), the coefficients of the basis, we will use a
subset of the components of w(t), w;cs(t) with J C {1,..., N}, as the
independent variables of the problem.

Offline stage: the HDM generates a database of Nsnap snapshots w(t;)
defined on the grid cells 91,9, ...,Qy. As before they are collected in a
matrix S € RN >*Nsnap_

POD Problem Reformulation:

min [|S—VV'DS|%, subjectto VDV =I
VERNxk

Def: Weighted Frobenius Norm:

|Allr, = tr(ATDA)
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Solution and Projection Representation

Let: S = D~1/2S, then the previous POD problem becomes again:
. = T &9 _ ~T =
~min ||[S—VV S| subjectto V' V=1
VERN xk

where V = D~1/2V,

Therefore:

and hence:
& =D '/?0,.
The POD modes are recovered by a standard SVD and (®,®), = 1.

Angelo lollo Model Reduction CIMPAGHAMMAMET 74 /82



Hyper-reduction

@ As before, we take a subset of k columns of ® to define V e RV*k,

according to an energy criterion. We denote by ¢;; the element of row
i and column j of V.
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Hyper-reduction

o As before, we take a subset of k columns of ® to define V e RV*F,
according to an energy criterion. We denote by ¢;; the element of row
i and column j of V.

o Consider now

alt) = {60 hcsep = (V. W) p = { DI G0y }

1<i<k
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Hyper-reduction

o As before, we take a subset of k columns of ® to define V e RV*F,
according to an energy criterion. We denote by ¢;; the element of row
i and column j of V.

o Consider now

a(t) = {a:Oheiee = (V. wO)p = {20 Guy®oy }

o We can approximate the discrete scalar product above by a quadrature:
a(t) = {a:(Oh <oz = (Vow(t)p = { ey Gui ()6 | where
Jc{l,...,N}.
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Hyper-reduction

o As before, we take a subset of k columns of ® to define V e RV*F,
according to an energy criterion. We denote by ¢;; the element of row
i and column j of V.

o Consider now
a(t) = {a:Oheiee = (V. wO)p = {20 Guy®oy }

o We can approximate the discrete scalar product above by a quadrature:
a(t) ={¢i()}r<ich = (V,w(t)p = {ZjEJ Cjwj(t)@j}KKk where
Jc{l,...,N}. o

@ The empirical quadrature weights fj and points are determined to best
approximate the original projections.
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Hyper-reduction

o As before, we take a subset of k columns of ® to define V e RV*F,
according to an energy criterion. We denote by ¢;; the element of row
i and column j of V.

o Consider now
a(t) = {a:Oheiee = (V. wO)p = {20 Guy®oy }

o We can approximate the discrete scalar product above by a quadrature:
a(t) = {a:(Oh <oz = (Vow(t)p = { ey Gui ()6 | where
Jc{l,...,N}. o

@ The empirical quadrature weights fj and points are determined to best
approximate the original projections.

@ To do that, define:

wi(t)ga - wy(t')in
Gi = : L : c RNsnapr

wl(th."ap)(bil e wN(thr;ap)d)iN)
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Non-Negative Empirical Weights and Sparsity

@ Define also:

Z;V:l Gwi(t') i
d; = : € RNsnar

S0 G (Ve ) gy
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Non-Negative Empirical Weights and Sparsity

@ Define also:
Z;V:l Gwi(t') i
d; = : € RVerap
S0 G (Ve ) gy

o The objective is to find non-negative empirical weights ¢ = {fj} -

je€
and aset J C {1,..., N} to promote sparsity, accurately
approximating the projections.
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Non-Negative Empirical Weights and Sparsity

@ Define also:
N
Z]’:l Cjwj(t1)¢z‘j
d; = : € RNsnar
N
> Gy (£VeneP )
o The objective is to find non-negative empirical weights ¢ = {fj} -
je€

and aset J C {1,..., N} to promote sparsity, accurately
approximating the projections.

@ This problem can be formulated as:

( = argmin ,
¢ = argmin o

A={¢eRY :||GC—dl|2 < ef|d]2}
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Non-Negative Empirical Weights and Sparsity

@ Define also:

N

Zj:l Cjwj(t1)¢z‘j

d; = : € RNsnar
N
> Gy (£VeneP )
o The objective is to find non-negative empirical weights ¢ = {fj} -
j€

and aset J C {1,..., N} to promote sparsity, accurately
approximating the projections.

@ This problem can be formulated as:

( = argmin ,
¢ = argmin o

A={CeRY :|G¢—d|2 <eld]2}
o G € RFNVsnapxN gnd d € RF¥Nsnap are the concatenation of G; and d;

for each one of the k-dimensional POD basis.
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Non-Negative Empirical Weights and Sparsity

@ The problem ¢ = arg mingen [|Cl|o, is NP-hard.
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Non-Negative Empirical Weights and Sparsity

@ The problem ¢ = arg mingen [|Cl|o, is NP-hard.

@ It is approximated by solving a the Non-Negative Least Squares
problem (C. Farhat):

¢ = arg min [|G¢ — d3,
geRﬁ

using the Lawson-Hanson algorithm.
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Non-Negative Empirical Weights and Sparsity

@ The problem ¢ = arg mingen [|Cl|o, is NP-hard.

@ It is approximated by solving a the Non-Negative Least Squares
problem (C. Farhat):

¢ = arg min |G¢ —d|3,
CeR¥Y
using the Lawson-Hanson algorithm.

@ This algorithm encourages sparsity in the solution and ensures that the
solution meets the error tolerance ¢, i.e., ||G¢ — d||2 < €||d||2-
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Non-Negative Empirical Weights and Sparsity

@ The problem ¢ = arg mingen [|Cl|o, is NP-hard.

@ It is approximated by solving a the Non-Negative Least Squares
problem (C. Farhat):

¢ = arg min |G¢ —d|3,
CeR¥Y
using the Lawson-Hanson algorithm.

@ This algorithm encourages sparsity in the solution and ensures that the
solution meets the error tolerance ¢, i.e., ||G¢ — d||2 < €||d||2-

o The resulting empirical weights ¢ are then used to select a reduced set
of quadrature points, corresponding to the non-zero weights.
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Collocation and Hyper-Reduced Prolongation Operator

@ We have now the approximation:
q(t) = {Qi}1§i§k = (va(t))D ~ {Zje] Cjwj(t)¢ij)}l<i<k, where
J C{1,...,N} is a small set of quadrature points. o
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Collocation and Hyper-Reduced Prolongation Operator

@ We have now the approximation:
a(t) = {aihicicy = (Vow(O)p ~ { Sy Gui0y) } . where
J C{1,...,N} is a small set of quadrature points.

@ Hence:

dq(t) {dq,} dw]
N G
dt dt ) 1<ick jGZJ T i<k
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Collocation and Hyper-Reduced Prolongation Operator

@ We have now the approximation:
a(t) = {a:hzicn = (Vo w(t)p = {Xjes Gui®i) f __, where
J C{1,...,N} is a small set of quadrature points.

@ Hence:

dq(t) {dqi} dw]
N G
dt dt ) 1<ick jGZJ T i<k

@ For i € J we obtain

N k

de Z A, Wi (¢ Z Aim Z Gsm Z Gj psjw;(t

jeJ
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Collocation and Hyper-Reduced Prolongation Operator

@ We have now the approximation:
a(t) = {a:hzicn = (Vo w(t)p = {Xjes Gui®i) f __, where
J C{1,...,N} is a small set of quadrature points.

@ Hence:

dq(t) [ dg dw]
dt {dt 1<i<k ZCJ%

i€t 1<i<k

@ For i € J we obtain

N k

de Z A, Wi (¢ Z Aim Z Gsm Z Gj psjw;(t

jeJ

e We conclude that to advance w(t) in time, one only needlj advance
the solution at the quadrature points using the same spatial
discretization of the HDM, i.e., the same scheme.
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@ Traditional hyper-reduction methods focus on reducing the
computational cost of assembling matrices for the discrete projection
of non-linear terms.
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of non-linear terms.

@ The present approach hyper-reduces the discrete solution projection
operator itself.
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@ Traditional hyper-reduction methods focus on reducing the
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@ The present approach hyper-reduces the discrete solution projection
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@ Objective: Identify a subset of cells in the computational domain for
local solution of the HDM.
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@ Traditional hyper-reduction methods focus on reducing the
computational cost of assembling matrices for the discrete projection
of non-linear terms.
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@ Traditional hyper-reduction methods focus on reducing the
computational cost of assembling matrices for the discrete projection
of non-linear terms.

@ The present approach hyper-reduces the discrete solution projection
operator itself.
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local solution of the HDM.
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@ Traditional hyper-reduction methods focus on reducing the
computational cost of assembling matrices for the discrete projection
of non-linear terms.

@ The present approach hyper-reduces the discrete solution projection
operator itself.

@ Objective: Identify a subset of cells in the computational domain for
local solution of the HDM.

@ Steps:

@ Solve the HDM locally in selected cells.

@ Extend the local solution to local stencils.
© Propagate the solution to the rest of the domain.
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@ Traditional hyper-reduction methods focus on reducing the
computational cost of assembling matrices for the discrete projection
of non-linear terms.

@ The present approach hyper-reduces the discrete solution projection
operator itself.

@ Objective: Identify a subset of cells in the computational domain for
local solution of the HDM.
@ Steps:

@ Solve the HDM locally in selected cells.
@ Extend the local solution to local stencils.
© Propagate the solution to the rest of the domain.

@ Error analysis follows the same path as that shown before, with an
additional error introduced by the approximate projection.
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Closure Models
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Neural Correction for Residual Dynamics (L. Mathelin)

o Recall that the residual r(t) € RY is introduced by approximating
w(t) as Vq(t):

dq

1) = £(Va(t),0) +x(t) = x(t) = VI (H) ~ E(Va(®).1)

A%

Objective: Address the impact of unresolved dynamics in ROM using a
neural correction term.

Corrected Dynamics:

%1 =VTE(Vq(t),t) + R(y),

where:
e f(Vq(t),t): Resolved dynamics.

@ R(y): Neural correction term, learned from data.
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Memory Evolution:

dy
ay _ _
it E(y) — Ay,

where:
e y: Memory variable. E(y): Coupling term learned from data.
o A: Dissipative operator for stability.

Key Features:
@ Neural networks approximate R(y) and E(y).

@ Applicable to systems with scarce and noisy data.

Outcome:
e Significantly improved predictions compared to classical ROM.

e Efficient handling of long time horizons and unresolved dynamics.
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