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Multi-Query Parametric Problem Governed by PDEs

High-Dimensional Parametric
Discrete Problem
L(u;µ) = f(µ)

pippo

Model → Solution Database {u(µi)}

Reduced Parametric Model
Lr(v;µ) = fr(µ), v ↑ Ur

Discrete Solutions u(µ)

PDE Model

Dimensional Reduction: Ur
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Fundamental Ansatz for PDE Solution

Consider a PDE:

L(u;µ) = f(µ), u → U , µ → P,

where:

L: Di!erential operator.
u: Solution in function space U .
µ: Parameter in parameter space P.

Linear space approximation:

ur(µ) → span{u1, u2, . . . , uk} uk = u(µk),

where {ui}ki=1 are previously computed solutions (snapshots).
We have:

u(µ) ↑ ur(µ) =
k∑

i=1

ci(µ)ui.

Angelo Iollo Model Reduction CIMPA@HAMMAMET 3 / 82



Fundamental Ansatz for PDE Solution

Consider a PDE:

L(u;µ) = f(µ), u → U , µ → P,

where:
L: Di!erential operator.

u: Solution in function space U .
µ: Parameter in parameter space P.

Linear space approximation:

ur(µ) → span{u1, u2, . . . , uk} uk = u(µk),

where {ui}ki=1 are previously computed solutions (snapshots).
We have:

u(µ) ↑ ur(µ) =
k∑

i=1

ci(µ)ui.

Angelo Iollo Model Reduction CIMPA@HAMMAMET 3 / 82



Fundamental Ansatz for PDE Solution

Consider a PDE:

L(u;µ) = f(µ), u → U , µ → P,

where:
L: Di!erential operator.
u: Solution in function space U .

µ: Parameter in parameter space P.

Linear space approximation:

ur(µ) → span{u1, u2, . . . , uk} uk = u(µk),

where {ui}ki=1 are previously computed solutions (snapshots).
We have:

u(µ) ↑ ur(µ) =
k∑

i=1

ci(µ)ui.

Angelo Iollo Model Reduction CIMPA@HAMMAMET 3 / 82



Fundamental Ansatz for PDE Solution

Consider a PDE:

L(u;µ) = f(µ), u → U , µ → P,

where:
L: Di!erential operator.
u: Solution in function space U .
µ: Parameter in parameter space P.

Linear space approximation:

ur(µ) → span{u1, u2, . . . , uk} uk = u(µk),

where {ui}ki=1 are previously computed solutions (snapshots).
We have:

u(µ) ↑ ur(µ) =
k∑

i=1

ci(µ)ui.

Angelo Iollo Model Reduction CIMPA@HAMMAMET 3 / 82



Fundamental Ansatz for PDE Solution

Consider a PDE:

L(u;µ) = f(µ), u → U , µ → P,

where:
L: Di!erential operator.
u: Solution in function space U .
µ: Parameter in parameter space P.

Linear space approximation:

ur(µ) → span{u1, u2, . . . , uk} uk = u(µk),

where {ui}ki=1 are previously computed solutions (snapshots).

We have:

u(µ) ↑ ur(µ) =
k∑

i=1

ci(µ)ui.

Angelo Iollo Model Reduction CIMPA@HAMMAMET 3 / 82



Fundamental Ansatz for PDE Solution

Consider a PDE:

L(u;µ) = f(µ), u → U , µ → P,

where:
L: Di!erential operator.
u: Solution in function space U .
µ: Parameter in parameter space P.

Linear space approximation:

ur(µ) → span{u1, u2, . . . , uk} uk = u(µk),

where {ui}ki=1 are previously computed solutions (snapshots).
We have:

u(µ) ↑ ur(µ) =
k∑

i=1

ci(µ)ui.

Angelo Iollo Model Reduction CIMPA@HAMMAMET 3 / 82



Reduction of Function Space

A!ne space approximation:

u(µ) ↑ u0(µ) +
k∑

i=1

ci(µ)(ui ↓ u0(µi)),

where u0(µ) is a reference solution (a lifting of the b.c. for example).

Informal notion of reduced function space:

Construct a reduced space Ur ↔ U , where:

Ur ↑ span{u1, u2, . . . , uk}.

Solve the reduced problem:

Lr(v;µ) = fr(µ), v → Ur.

Reduction goal: Retain accuracy while significantly reducing
computational complexity.
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Plan of the Course

Part 1: Constructing the Reduced Space

Linear approaches:

Proper Orthogonal Decomposition (POD).
Singular Value Decomposition (SVD).
Reduced Basis (RB) methods.

Non-linear approaches:

Optimal transportation-based methods.
Quadratic approximation manifold techniques.

Part 2: Sampling the Parameter Space

Uniform sampling for moderate dimensions.
Latin Hypercube Sampling (LHS) for higher dimensions.
Adaptive and goal-oriented greedy sampling based on error indicators.

Part 3: Solving in the Reduced Space

Interpolation in the parameter space.
pMOR
cMOR
Mention of closure models for non-intrusive reduced-order systems.
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Learning Objectives

By the end of this course, participants should be able to:
Understand the fundamental principles of projection-based model
reduction.

Learn and apply key mathematical tools:

Proper Orthogonal Decomposition (POD) and Singular Value
Decomposition (SVD),
Reduced Basis (RB) methods.
Construct a pMOR
Construct a cMOR

Formulate and solve a simple parametric PDE using reduced-order
models.
Understand the links between parameter sampling, accuracy, stability,
and computational e!ciency.
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Preliminary Remark

Project then Discretize:

Derive reduced-order equations in continuous form.
Apply numerical discretization to the reduced equations.
Advantages:

Preserves some structure of the original system.
Easier to derive.

Discretize then Project:

Discretize the full-order model first.
Apply projection to reduce the system size.
Advantages:

Numerical stability induced by the discretization scheme.
Consistent with the full-order model.

Comparison:

Accuracy and stability vs. intrusivity

Angelo Iollo Model Reduction CIMPA@HAMMAMET 7 / 82



Part 1: Constructing the Reduced Space
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High-Dimensional Model

Nonlinear High-Dimensional Model:

dw

dt
= f(w(t), t), y(t) = g(w(t), t).

Initial condition:
w(0) = w0.

Variables:
w → RN : State vector.
y → Rq: Output vector, typically q ↗ N .

Function f defines the dynamics.

Angelo Iollo Model Reduction CIMPA@HAMMAMET 9 / 82



Proper Orthogonal Decomposition (POD)

Consider a fixed initial condition w0 → RN

Denote the associated state trajectory in the time-interval [0, T ] by

Tw = {w(t)}0→t→T

The Proper Orthogonal Decomposition (POD) method seeks an
orthonormal basis V → RN↑k defining a projector !v = VVT of fixed
rank k that minimizes the integrated projection error

J(!v,w) =

∫ T

0
↘w(t)↓!vw(t)↘22 dt

Angelo Iollo Model Reduction CIMPA@HAMMAMET 10 / 82



Theorem

Let K̂ → RN↑N be the real, symmetric, positive, semi-definite matrix
defined as follows

K̂ =

∫ T

0
w(t)w(t)T dt

Let ω̂1 ≃ ω̂2 ≃ · · · ≃ ω̂N ≃ 0 denote the ordered eigenvalues of K̂ and
ε̂i → RN , i = 1, · · · , N , denote their associated eigenvectors which are also
referred to as the POD modes

K̂ε̂i = ω̂iε̂i, i = 1, · · · , N

The subspace V̂ = span(ε̂1, . . . , ε̂k) of dimension k minimizes J(!v,w).
It is the invariant subspace of K̂ associated with the eigenvalues
ω̂1 ≃ ω̂2 ≃ · · · ≃ ω̂k

Angelo Iollo Model Reduction CIMPA@HAMMAMET 11 / 82



Snapshot Method for POD

Solving the eigenvalue problem K̂ε̂i = ω̂iε̂i is in general
computationally intractable because:

The dimension N of the matrix K̂ is usually large
This matrix is usually dense

However, the state data is typically available under the form of
discrete "snapshot" vectors

{w(ti)}
Nsnap

i=1

In this case,
∫ T
0 w(t)w(t)T dt can be approximated using a quadrature

rule as follows

K =

Nsnap∑

i=1

ϑiw(ti)w(ti)
T

where ϑi, i = 1, . . . , Nsnap are the quadrature weights
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Snapshot Matrix

Define the snapshot matrix S → RN↑Nsnap as:

S =
[⇐

ϑ1w(t1) · · · ⇐
ϑNsnap

w(tNsnap
)
]

It follows that:

K = SST

Here, K is still a large-scale (N ⇒N) matrix
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Snapshot Method for POD

Note that the non-zero eigenvalues of the matrix K = SST → RN↑N

are the same as those of the matrix R = STS → RNsnap↑Nsnap

Since usually Nsnap ↗ N , it is more economical to solve instead the
symmetric eigenvalue problem

Rϖi = ωiϖi, i = 1, · · · , Nsnap

However, if S is ill-conditioned, R is worse conditioned

ϱ2(R) = ϱ2(S)
2
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Snapshot Method for POD

If rank(R) = r, then the first r POD modes εi are given by

εi =
1⇐
ωi

Sϖi, i = 1, · · · , r

Let ” = [ε1 · · ·εr] and # = [ϖ1 · · ·ϖr] with
#T# = Ir =⇑ ” = S#$↓ 1

2 where

$ =

[
ω1 (0)
(0) ωr

]

Rϖi = ωiϖi, i = 1, · · · , Nsnap =⇑ #TR# = #TSTS# = $

Hence, ”TK” = $↓ 1
2#TSTS#$↓ 1

2 = $↓ 1
2$#T#$↓ 1

2 = $
Since the columns of ” are the eigenvectors of K ordered by
decreasing eigenvalues, the optimal orthogonal basis of size k ⇓ r is

V = [”k ”r↓k]

[
Ik
0

]
= ”k
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Relationship with Singular Value Decomposition (SVD)

For a given matrix A → RN↑M , there exist orthogonal matrices
U → RN↑N and Z → RM↑M such that

A = U!ZT

where UTU = IN , ZTZ = IM and matrix ! → RN↑M has diagonal
entries %ii = ςi satisfying ς1 ≃ ς2 ≃ · · · ≃ ςmin(N,M) ≃ 0 and zero
entries elsewhere
{ςi}min(N,M)

i=1 are the singular values of A
Columns of U and Z are left and right singular vectors of A, with
U = [u1 · · ·uN ] and Z = [z1 · · · zM ]
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Schmidt-Eckart-Young-Mirsky Theorem

Given A → RN↑M with N ≃ M , which matrix X → RN↑M with
rank(X) = k < r = rank(A) ⇓ M minimizes ↘A↓X↘2?
Theorem (Schmidt-Eckart-Young-Mirsky):

min
X,rank(X)=k

↘A↓X↘2 = ςk+1(A), if ςk(A) > ςk+1(A)

X =
∑k

i=1 ςiuizTi , minimizes ↘A↓X↘2, where A = U!ZT .
This minimizer is also the unique solution of the related problem
(Eckart-Young theorem)

min
X,rank(X)=k

↘A↓X↘F =

(
r∑

i=k+1

ς2
i

)1/2

This result explains the concept of "low-rank" approximation and its
connection with SVD
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Relationship POD-SVD

The discretization of the POD by the method of snapshots requires
computing the eigenspectrum of K = SST

”TK” = ”TSST” = #

corresponding to its non-zero eigenvalues
Link with the SVD of S

S = U!ZT =
[
Ur UN↓r

] [!r 0
0 0

]
ZT

=⇑ K = U!2UT and UTKU = !2

=⇑ ” = Ur and #
1
2 = !r ⇔⇑ # = !2

r

Computing the SVD of S is usually preferred since as noted as noted
earlier ϱ2(R) = ϱ2(S)2.
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Greedy Approach for Basis Selection - Reduced Basis

Goal: Select a subset of snapshots to form a reduced basis spanning Ur.

Algorithm:

1 Initialize the reduced space: Ur = {0}.
2 For each iteration:

Find the parameter µi → P that maximizes the error indicator:

µi = argmax
µ→P

&(u(µ),Ur),

where typically &(u(µ),Ur) = ↘u(µ)↓!Uru(µ)↘X := .
Enrich the reduced space:

Ur ↖ Ur ↙ {u(µi)}.

3 Stop when &(u(µ),Ur) < φ or the basis reaches the desired size k.
Key Features:

Maximizes the worst-case error at each step.
Ensures an optimal reduced basis for a given number of functions.
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Non-linear Interpolation
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Kolmogorov Width

Let P be a compact set and ↼ : P ∝ ’ be the mapping associating any
z → P to a parametric solution u = ↼(z) → ’ under the constraint given by
the PDE:

R(u(z), z) = 0, ′z → P

The PDE implicitly defines a manifold in the Hilbert space (V, ↘ · ↘), with
im↼ ↔ V .
Let Vn be an n-dimensional (n < +∞) subspace of V .
The Kolmogorov width is defined as:

dVn = inf
Vn↔V

sup
v↗imω

inf
vn↗Vn

↘v ↓ vn↘

with Vn being a generic n-dimensional subspace of V .
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Preliminary notions

We are interested in a continuous medium that occupies the space ’0 in
the reference (or initial) configuration and ’t in the deformed configuration
at time t. All the domains considered hereafter are included in R2 or R3.

We define the direct characteristics X

X : ’0 ⇒ [0, T ] ↓∝ ’t

(↽, t) ∈∝ X(↽, t)

The "velocity" field is given by

u : ’t ⇒ [0, T ] ↓∝ R3

(x, t) ∈∝ u(x, t)
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Eulerian & Lagrangian formulation

The Eulerian description consists of working with quantities on the
deformed configuration ’t (in the simplest case, the velocity field u(x, t)).
The Lagrangian description consists of working with quantities on the
reference configuration ’0 (the characteristics X(↽, t)).

The two formulations are equivalent by virtue of the relation

⇀X

⇀t
(↽, t) = u(X(↽, t), t)

which is complemented with the initial condition X(↽, 0) = ↽.
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Di!eomorphism

We assume throughout that the deformations X(·, t) are smooth, bijective
mappings between manifolds where both the map and its inverse are
smooth, and do not change the orientation, that is

det(∋εX(↽, t)) > 0

Under these hypothesis, for volumes, the change of variable x = X(↽, t)
allows us to revert to the reference configuration

∫

X(!0,t)=!t

f(x, t) dx =

∫

!0

f(X(↽, t), t) det(∋εX(↽, t)) d↽
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Reynolds formula and conservation of mass

Reynolds formula for volumes is written as

d

dt

(∫

!t

f(x, t) dx

)
=

∫

!t

(ft + div(fu)) dx

Conservation of Mass in Eulerian Form

The conservation of mass states that the mass variation of a volume ’t is
independent of time

d

dt

(∫

!t

⇁(x, t) dx

)
= 0

Using Reynolds formula with f = ⇁, we obtain the conservation of mass in
the deformed configuration

⇁t + div(⇁u) = 0
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Conservation of mass in Lagrangian form

We simply revert to the reference configuration

d

dt

(∫

!0

⇁(X(↽, t), t) det(∋εX(↽, t)) d↽

)
= 0

which can be written, since X(↽, 0) = ↽,

⇁(X(↽, t), t) det(∋εX(↽, t)) = ⇁0(↽)
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Inverse mapping

We introduce the backward characteristics Y

Y : ’t ⇒ [0, T ] ↓∝ ’0

(x, t) ∈∝ Y (x, t)

These functions are related to the direct characteristics X by the relations

X(Y (x, t), t) = x Y (X(↽, t), t) = ↽

By derivation of the first equation with respect to x and the second with
respect to t:

[∋εX(↽, t)] = [∋xY (x, t)]↓1 Yt + (u ·∋)Y = 0

...and mass conservation with respect to Y

⇁(x, t) = det(∋xY (x, t))⇁(Y (x, t), 0)

where ⇁(Y (x, t), 0) = ⇁0(Y (x, t))

Angelo Iollo Model Reduction CIMPA@HAMMAMET 29 / 82



Inverse mapping

We introduce the backward characteristics Y

Y : ’t ⇒ [0, T ] ↓∝ ’0

(x, t) ∈∝ Y (x, t)

These functions are related to the direct characteristics X by the relations

X(Y (x, t), t) = x Y (X(↽, t), t) = ↽

By derivation of the first equation with respect to x and the second with
respect to t:

[∋εX(↽, t)] = [∋xY (x, t)]↓1 Yt + (u ·∋)Y = 0

...and mass conservation with respect to Y

⇁(x, t) = det(∋xY (x, t))⇁(Y (x, t), 0)

where ⇁(Y (x, t), 0) = ⇁0(Y (x, t))

Angelo Iollo Model Reduction CIMPA@HAMMAMET 29 / 82



Inverse mapping

We introduce the backward characteristics Y

Y : ’t ⇒ [0, T ] ↓∝ ’0

(x, t) ∈∝ Y (x, t)

These functions are related to the direct characteristics X by the relations

X(Y (x, t), t) = x Y (X(↽, t), t) = ↽

By derivation of the first equation with respect to x and the second with
respect to t:

[∋εX(↽, t)] = [∋xY (x, t)]↓1 Yt + (u ·∋)Y = 0

...and mass conservation with respect to Y

⇁(x, t) = det(∋xY (x, t))⇁(Y (x, t), 0)

where ⇁(Y (x, t), 0) = ⇁0(Y (x, t))

Angelo Iollo Model Reduction CIMPA@HAMMAMET 29 / 82



Inverse mapping

We introduce the backward characteristics Y

Y : ’t ⇒ [0, T ] ↓∝ ’0

(x, t) ∈∝ Y (x, t)

These functions are related to the direct characteristics X by the relations

X(Y (x, t), t) = x Y (X(↽, t), t) = ↽

By derivation of the first equation with respect to x and the second with
respect to t:

[∋εX(↽, t)] = [∋xY (x, t)]↓1 Yt + (u ·∋)Y = 0

...and mass conservation with respect to Y

⇁(x, t) = det(∋xY (x, t))⇁(Y (x, t), 0)

where ⇁(Y (x, t), 0) = ⇁0(Y (x, t))
Angelo Iollo Model Reduction CIMPA@HAMMAMET 29 / 82



Optimal transportation: a crush primer

We introduce the probability measures P0,P1 with pdfs ⇁0, ⇁1 and
cumulative distribution functions F0, F1,

Fi(x) =

∫ x1

↓↘
. . .

∫ xn

↓↘
⇁i(x

≃) dx≃, i = 0, 1, x → Rn.

We assume that ⇁0, ⇁1 have finite second-order moments. We say that
X : Rn ∝ Rn transports P0 to P1 if P1(B) = P0(X↓1(B)) for all
P1-measurable sets B, with Y (B) = X↓1(B) := {↽ → Rn : X(↽) → B},
and we use notation P1 = X#P0.
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Monge problem

Note that the latter implies local mass conservation

⇁0(↽) = ⇁1(X(↽))det∋εX(↽), ′ ↽ → Rn,

or equivalently
F0(↽) = F1(X(↽)), ′ ↽ → Rn.

With this notation, we can introduce the Monge optimal transport problem
as follows: find X : Rn ∝ Rn to minimize

I(X; ⇁0, ⇁1) =

∫

Rn
↘X(↽)↓ ↽↘22 ⇁0(↽) d↽,

under the constraint of mass conservation.
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Main result (Y. Brenier)

There exists a unique convex potential #(↽): Rn ↓∝ R, such that the
mapping X(↽) = ∋ε# minimizes I(X; ⇁0, ⇁1)
subject to

⇁0(↽) = ⇁1(∋ε#) det
(
∋2

ε#
)
.

Let J be the minimum of I(X; ⇁0, ⇁1) subject to mass conservation.
Existence and uniqueness of # implies that

W2(⇁0, ⇁1) =
⇐
J

is a distance function between probability measures; W2 is known as the
Wasserstein metric.
The Wasserstein distance is a rigorous proxy of the notion of displacement.
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Displacement (McCann) interpolation

We introduce the displacement (or geodesic) interpolant ⇁̂+s between ⇁0
and ⇁1 such that

⇁̂+s (↽) = ⇁1(T (s, ↽)) det (∋εT (s, ↽)),

and the mapping T (s, ↽) : [0, 1]⇒ Rn ↓∝ Rn is defined as

T (s, ↽) = (1↓ s) ↽ + s∋ε#(↽).

Note that ⇁̂+s = ⇁0 for s = 0 and ⇁̂+s = ⇁1 for s = 1.
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Reverse displacement interpolation

We further introduce the inverse map W : R+ ⇒ Rn ∝ Rn such that

W (s, ·) = T↓1(s, ·), ′ s → [0, 1],

and the reverse McCann interpolation, which is obtained by inverting the
role of ⇁0 and ⇁1:

⇁̂↓s (x) = ⇁1(W (s, x)) det (∋xW (s, x)).
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Convex interpolation

Linear models can be interpreted as a generalization of convex
interpolations of two snapshots u0, u1, that is

û(s, x) = (1↓ s)u0(x) + su1(x) s → [0, 1], x → ’.

The use of linear methods relies on the assumption that the problem of
interest exhibits a global nature.
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Convex Displacement Interpolation (CDI)

We define the nonlinear interpolation:

û(s, x) = (1↓ s)u0 △ T↓1
g (s, x) + su1 △W↓1

g (1↓ s, x)

where s → [0, 1], x → ’.

We refer to û as convex displacement interpolation due to the analogy
with displacement interpolation and the more elementary convex
interpolation.
In several relevant PDE problems this formula is an exact interpolation with
respect to the parameter using the exact OT mapping
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Convex Displacement Interpolation (CDI) - Linearisation

We linearize T↑1(s, ·) and W↑1(s, ·)

T↑1
g (s, ·) ↑ (1↓ s)T↑1

g (0, ·) + sT↑1
g (1, ·) = (1↓ s) ·+sYg(·) = Wg(s, ·),

and

W↑1
g (s, ·) ↑ (1↓ s)W↑1

g (0, ·) + sW↑1
g (1, ·) = (1↓ s) ·+sX(·) = Tg(s, ·)

The linearised formula is then:

û(s, x) = (1↓ s)u0 △Wg(s, x) + su1 △ Tg(1↓ s, x),
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CDI

W(1,x)=ξ

µ

U

U

0

1

U(s,x)

U (0,x)

U (1,x)

0

1

)ξT(1,

x

x

x=

Remarks:
1 CDI is symmetric
2 CDI includes convex interpolation (e.g. T (1, ↽) = ↽)
3 CDI respects the maximum principle

Û(s, x) ⇓ max(U0(x), U1(Tg(1, x))) = max(U0(W (1, x)), U1(x))
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OT of multivariate normal density distributions

We define the normal density distribution N with mean µ → Rn and
symmetric positive definite covariance % → Rn↑n:

N (x; µ,%) =
1

(2π)n/2 |%|1/2
e↓

1
2 (x↓µ)→”↑1(x↓µ).

Given the densities π = N (·; µ0,%0) and ν = N (·; µ1,%1), we find that
the displacement interpolant N̂s is Gaussian with mean and covariance
given by

µs = (1↓s)µ0+s µ1, %s = %↓1/2
0

(
(1↓ s)%0 + s


%1/2
0 %1%

1/2
0

1/2
)2

%↓1/2
0 ,

for all s → [0, 1].

Angelo Iollo Model Reduction CIMPA@HAMMAMET 39 / 82



OT of multivariate normal density distributions

We define the normal density distribution N with mean µ → Rn and
symmetric positive definite covariance % → Rn↑n:

N (x; µ,%) =
1

(2π)n/2 |%|1/2
e↓

1
2 (x↓µ)→”↑1(x↓µ).

Given the densities π = N (·; µ0,%0) and ν = N (·; µ1,%1), we find that
the displacement interpolant N̂s is Gaussian with mean and covariance
given by

µs = (1↓s)µ0+s µ1, %s = %↓1/2
0

(
(1↓ s)%0 + s


%1/2
0 %1%

1/2
0

1/2
)2

%↓1/2
0 ,

for all s → [0, 1].

Angelo Iollo Model Reduction CIMPA@HAMMAMET 39 / 82



OT of multivariate normal density distributions

The forward mapping T is also available in closed form:

T (s, ↽) = (1↓ s) ↽ + s

(
µ1 + %↓1/2

0


%1/2
0 %1%

1/2
0

1/2
%↓1/2
0 (↽ ↓ µ0)

)
.

Finally, the Wasserstein distance between Gaussian density distributions is
given by:

W2 (N (µ0,%0) ,N (µ1,%1)) =

=



↘µ1 ↓ µ0↘22 + Tr

(
%0 + %1 ↓ 2


%1/2
0 %1%

1/2
0

1/2
)
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Gaussian model of coherent structures

Given the field U : Rn ∝ Rd and the scalar testing function
T (·;U) : Rn ∝ R, the set

CT (U) := {x → Rn : T (x;U) > 0}
identifies coherent structures associated with the criterion T

For example, if U is a velocity field and T (x;U) = ↘∋ ⇒ U(x)↘2 ↓ ▷ with
▷ > 0, CT (U) identifies the region where enstrophy exceeds a threshold ▷

Objective: fit a Gaussian probability density function ε(x; µ,%) to CT (U)

ε(x; µ,%) =
1

(2π)n/2 |%|1/2
e↑

1
2 (x↑µ)→!↑1(x↑µ).

Define a finite-dimensional discretization of the domain of interest
Phf = {xi}Nhf

i=1 and we define

P+
hf := {x → Phf : T (x;U) > 0} = {yj}

N+
hf

j=1

Assume that {yj}j are IID realizations of a multivariate Gaussian distribution
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Gaussian model of coherent structures

Estimate mean and variance by MLE:





µmle[U ] =
1

N+
hf

N+
hf∑

j=1

yj ,

%mle[U ] =
1

N+
hf

N+
hf∑

j=1

(yj ↓ µmle[U ]) (yj ↓ µmle[U ])T

Given the Gaussian densities π = ε(·; µ0,%0) and ν = ε(·; µ1,%1), the
displacement interpolant ε̂s is Gaussian for all s → [0, 1] with mean and
covariance given by

µs = (1↓s)µ0+s µ1, %s = %↑1/2
0

(
(1↓ s)%0 + s


%1/2

0 %1%
1/2
0

1/2
)2

%↑1/2
0

The forward and backward mappings Tg and Wg are hence available in
closed form:

Tg(s, ↽) = (1↓ s) ↽ + s

(
µ1 + %↑1/2

0


%1/2

0 %1%
1/2
0

1/2
%↑1/2

0 (↽ ↓ µ0)

)

and Wg(s, x) = (1↓ s)x+ sRg(1, x), where Rg(1, ·) = T↑1
g (1, ·)
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Generalization: notation

µ: the vector of model parameters in the region P ↔ Rp

’ ↔ Rd is the open computational domain
the parametric field of interest uµ : ’⇒ P ∝ RD

the solution manifold M = {uµ := u(·;µ) : µ → P}
the training set Ptrain = {µk}ntrain

k=1 ↔ P
the dataset of solutions Dtrain = {uµ : µ → Ptrain}
Set of ϱ nearest neighbors to µ: Pµ

nn = {νi}ϑi=1 ↔ Ptrain

CDI is now:
ûµ =

∑

ϖ↗Pµ
nn

◁ϖ
µuϖ , where uϖ = uϖ △ ”ϖ ,

for a proper choice of the weights {◁ϖ
µ : ν → Pµ

nn} and mappings ”ϖ as
found next.

Angelo Iollo Model Reduction CIMPA@HAMMAMET 43 / 82



Generalization: notation

µ: the vector of model parameters in the region P ↔ Rp

’ ↔ Rd is the open computational domain

the parametric field of interest uµ : ’⇒ P ∝ RD

the solution manifold M = {uµ := u(·;µ) : µ → P}
the training set Ptrain = {µk}ntrain

k=1 ↔ P
the dataset of solutions Dtrain = {uµ : µ → Ptrain}
Set of ϱ nearest neighbors to µ: Pµ

nn = {νi}ϑi=1 ↔ Ptrain

CDI is now:
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ûµ =

∑

ϖ↗Pµ
nn

◁ϖ
µuϖ , where uϖ = uϖ △ ”ϖ ,

for a proper choice of the weights {◁ϖ
µ : ν → Pµ

nn} and mappings ”ϖ as
found next.

Angelo Iollo Model Reduction CIMPA@HAMMAMET 43 / 82



Generalization: notation

µ: the vector of model parameters in the region P ↔ Rp

’ ↔ Rd is the open computational domain
the parametric field of interest uµ : ’⇒ P ∝ RD

the solution manifold M = {uµ := u(·;µ) : µ → P}
the training set Ptrain = {µk}ntrain

k=1 ↔ P
the dataset of solutions Dtrain = {uµ : µ → Ptrain}
Set of ϱ nearest neighbors to µ: Pµ

nn = {νi}ϑi=1 ↔ Ptrain

CDI is now:
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Generalization: Algorithm

Algorithm : o"ine/online decomposition.

O!ine stage performed once
1: Generate the dataset Dtrain = {uµ : µ → Ptrain}.

2: Identify the point clouds {Xraw
µ : µ → Ptrain}.

3: Define the template set Xref and the sorted point clouds {Xµ : µ →
Ptrain}.

Online stage performed for any µ → P
1: Estimate the new points X̂µ = {x̂i,µ}Ni=1.

2: Select the neighboring parameters Pµ
nn = {νi}ϑi=1 ↔ Ptrain.

3: Compute the mappings ”ϖ based on X̂µ and X̂ϖ for all ν → Pµ
nn.

4: Compute the weights {◁ϖ
µ : ν → Pµ

nn} and return the estimate .
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Sensor (or Feature) Selection

Define a problem-dependent scalar testing function T & consider a
discrete set of test points Phf ↔ ’.

Compute the following for all µ → Ptrain:
Xraw

µ =

x → Phf : T (x, uhfµ ) ≃ tµ



The threshold tµ is chosen equal to the 0thr quantile over the training set:

tµ = quantile

{T (x, uhfµ ) : x → Phf}, 0thr



T : for compressible flow problems, as seen, Ducros sensor.
For 2D recirculating channel flows, we rely on the isolines of the
streamfunction:

#µ (x = [x1, x2]) =

∫ x2

ybtm(x1)
(uµ(x1, s))1 ds,

where ybtm(x1) = inf{x2 : [x1, x2] → ’}; then, T (x, uhfµ ) = ↓#µ (x)
and tµ ▽ 0; that is,

Xraw
µ = {x → Phf : #µ (x) ⇓ 0} .
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Point Cloud Matching

The raw point clouds Xraw
µ are typically not of the same size and are

not sorted.
Point Set Registration (PSR) is used to find matched point clouds:

Xµ = PSR

Xref , Xraw

µ



This involves finding a map T : Rd ∝ Rd that minimizes the distance
between point clouds.
The distance is defined as:

dist (Y, T (X)) = max
y↗Y

(
min
x↗X

↘y ↓ T (x)↘2
)
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Gaussian-based PSR

Gaussian-based PSR utilizes maximum likelihood estimation (MLE) to
estimate the mean and covariance matrix:

µX =
1

N

N∑

i=1

xi, %X =
1

N

N∑

i=1

(xi ↓ µX)(xi ↓ µX)⇐

The optimal transport map TX,Y is defined as:

TX,Y (x) = µY + %↓1/2
X


%1/2
X %Y %

1/2
X

1/2
%↓1/2
X (x↓ µX)

The deformed point cloud X is then defined as
X = {xi = TX,Y (xi)}Ni=1.
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Regression of Sorted Point Clouds

For approximating the mapping µ ∈∝ X̂µ, Radial Basis Function (RBF)
regression is used.
Proper Orthogonal Decomposition (POD) is then applied for an
equivalent representation:

Xµk =
M∑

i=1

Zi1
i
k

Here, Z1, . . . , ZM → RN↑d are the basis vectors and
11
1 , . . . ,1

M
ntrain

→ R are the coe!cients.

The coe!cients 1̂i are classically estimated by minimizing:

1̂i = arg min
ϱ↗Hω

ω↘1↘2
Hω

+
ntrain∑

k=1


1(µk)↓ 1i

k

2

Hς denotes the native space associated with the kernel ε and ω > 0 is a
regularization coe!cient.

We finally have the parameterized new points estimation:

X̂µ =
M∑

i=1

Zi1̂
i
µ

Angelo Iollo Model Reduction CIMPA@HAMMAMET 48 / 82



Regression of Sorted Point Clouds

For approximating the mapping µ ∈∝ X̂µ, Radial Basis Function (RBF)
regression is used.
Proper Orthogonal Decomposition (POD) is then applied for an
equivalent representation:

Xµk =
M∑

i=1

Zi1
i
k

Here, Z1, . . . , ZM → RN↑d are the basis vectors and
11
1 , . . . ,1

M
ntrain

→ R are the coe!cients.
The coe!cients 1̂i are classically estimated by minimizing:

1̂i = arg min
ϱ↗Hω

ω↘1↘2
Hω

+
ntrain∑

k=1


1(µk)↓ 1i

k

2

Hς denotes the native space associated with the kernel ε and ω > 0 is a
regularization coe!cient.

We finally have the parameterized new points estimation:

X̂µ =
M∑

i=1

Zi1̂
i
µ

Angelo Iollo Model Reduction CIMPA@HAMMAMET 48 / 82



Regression of Sorted Point Clouds

For approximating the mapping µ ∈∝ X̂µ, Radial Basis Function (RBF)
regression is used.
Proper Orthogonal Decomposition (POD) is then applied for an
equivalent representation:

Xµk =
M∑

i=1

Zi1
i
k

Here, Z1, . . . , ZM → RN↑d are the basis vectors and
11
1 , . . . ,1

M
ntrain

→ R are the coe!cients.
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ω↘1↘2
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Choice of Nearest Neighbors

Select parameters ν1, . . . , νϑ that minimize the Euclidean distance to
µ:

dist(µ, ν) = ↘µ↓ ν↘2

The weights for the neighbors are then defined as:

◁ϖ
µ =

◁ϖ
µ∑

ϖ↓↗Pµ
nn
◁ϖ↓
µ

, ◁ϖ↓
µ =

1

distp(µ, ν ≃)

Inverse distance weighting (IDW) is used with p = 2.
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Optimization-based registration (T. Taddei et al.)

An alternative approach consists in formulating the problem of registration
as a minimization problem of the form

min
#↗W!

1

N

N∑

i=1

↘”(xrefi )↓ x̂i,µ↘22 + P(”),

that can be solved using a gradient-based (quasi-Newton) method.

The optimization statement depends on the choice of the penalty term P

and of the search space W!: the former should enforce
local bijectivity det(∋”) > 0

promote the smoothness (in a Sobolev sense)
”(’) = ’

...
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Nonlinear Approximation Manifold (C. Farhat et al.)

Nonlinear approximation manifold generated by a RB and an

ANN

ũ = uref +Vq +VN (q)

V → RN↓n is constructed using the first n ↗ N columns of U
V → RN↓n is constructed using a subset of the next n ↗ N columns
of U; and n ̸ n
V and V satisfy the orthogonality properties

VTV = In, V
T
V = In, VTV = 0, V

T
V = 0

N is an ANN representing a map Rn ∝ Rn whose size nANN scales
with n ↗ N
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ũ = uref +Vq +VN (q)

V → RN↓n is constructed using the first n ↗ N columns of U
V → RN↓n is constructed using a subset of the next n ↗ N columns
of U; and n ̸ n

V and V satisfy the orthogonality properties

VTV = In, V
T
V = In, VTV = 0, V

T
V = 0

N is an ANN representing a map Rn ∝ Rn whose size nANN scales
with n ↗ N

Angelo Iollo Model Reduction CIMPA@HAMMAMET 51 / 82



Nonlinear Approximation Manifold (C. Farhat et al.)

Nonlinear approximation manifold generated by a RB and an

ANN
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ũ = uref +Vq +VN (q)

V → RN↓n is constructed using the first n ↗ N columns of U
V → RN↓n is constructed using a subset of the next n ↗ N columns
of U; and n ̸ n
V and V satisfy the orthogonality properties

VTV = In, V
T
V = In, VTV = 0, V

T
V = 0

N is an ANN representing a map Rn ∝ Rn whose size nANN scales
with n ↗ N

Angelo Iollo Model Reduction CIMPA@HAMMAMET 51 / 82



O"ine Training of the ANN Representing the Map f(q)

Let N (q; 0) be the ANN representing the map f(q) : Rn ∝ Rn̄, where
the vector-valued hyperparameter 0 → RnANN .

Construct N (q; 0) such that ideally

ui = uref +Vqi +VN (qi; 0), i = 1, · · · , Ns

From the above and the orthogonality properties of V and V̄ , it
follows that

qi = V T (ui ↓ uref ) and N (qi; 0) ▽ q̄i, i = 1, · · · , Ns

Hence

q (input) ∝ N (q; 0) ∝ q̄ (output)

0 = argmin
φ↓

1

Ntrain

Ntrain∑

i=1

(
q̄i ↓N (qi; 0

≃)
)2
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Part 2: Sampling the Parameter Space

Angelo Iollo Model Reduction CIMPA@HAMMAMET 53 / 82



Parameter Sample Selection for Computing Snapshots

How one chooses the s parameter samples µ1, . . . , µs where to
compute the snapshots {w(µ1), . . . ,w(µs)}?

The location of the samples in the parameter space will determine the
accuracy of the resulting global ROM in the entire parameter domain
D ↔ Rd

Possible approaches:

Uniform sampling for parameter spaces of moderate dimensions and
moderately computationally intensive High-Dimensional Models
(HDMs)
Latin Hypercube Sampling (LHS) for higher-dimensional parameter
spaces and moderately computationally intensive HDMs
Adaptive, goal-oriented, greedy sampling that exploits an error
indicator to focus on the PROM accuracy, for higher-dimensional
parameter spaces and computationally intensive HDMs
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Latin Hypercube Sampling (LHS)

Key Idea:

Divide each parameter range into M non-overlapping intervals of
equal probability.

Sample exactly one point from each interval for each parameter.
Ensure no two samples occupy the same interval along any dimension.

Algorithm:

1 For each parameter µi → [µmin
i , µmax

i ], 1 ⇓ i ⇓ d, divide the range into
M intervals:

µmin

i = µ1
i < µ2

i < · · · < µM
i = µmax

i .

2 Randomly sample one value from each interval.
3 Combine these samples randomly across all dimensions to generate M

points:
{µ1, µ2, . . . , µM}, µj → P.

Remarks:

M independent of the number of dimensions of the parameter space.
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Greedy approach

Ideally, one can build a ROM progressively and update it (increase its
dimension) by considering additional samples µ(i) and corresponding
solution snapshots at the locations of the parameter space where the
current ROM is the most inaccurate:

µi = argmax
µ↗D

↘EPROM(µ)↘ = argmax
µ↗D

↘w(µ)↓Vq(µ)↘

q(µ) can be e!ciently computed
But the cost of obtaining w(µ) can be high ⇑ eventually an
intractable approach
Idea: rely on an economical a posteriori error estimator/indicator

Error indicator based on the norm of the (a!ordable) residual

↘r(µ)↘ = ↘f(Vq(µ);µ)↘

For this purpose, D is typically replaced by a large discrete set of
candidate parameters {µ↼1, · · · , µ↼c} ↔ D
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Greedy Procedure Based on Residual Norm

Algorithm Greedy Sampling Algorithm

1: Randomly select a first sample µ1

2: Solve the HDM-based problem

f
(
w(µ1);µ1

)
= 0

3: Build a corresponding ROB V
4: for i = 2, . . . do

5: Solve

µ(i) = arg max
µ↗{µε),··· ,µεc}

↘r(µ)↘

6: Solve the HDM-based problem f
(
w(µi);µi

)
= 0

7: Build a ROB V based on the snapshots (or in this case, samples)


w(µ1), · · · , w(µi)



8: end for
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Part 3: Solving in the Reduced Space
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Response Surface
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Response Surface Model Reduction

Approximate the system response (e.g. RB latent variables) using a
surrogate model:

q̂(µ) =
n∑

i=1

ciϱi(µ),

where ϱi(µ) are basis functions, and ci are coe!cients. Both depend
on the parameter space sampling.

Common basis functions:

Polynomial (e.g., linear, quadratic).
Radial basis functions.

Steps:

1 Sample the parameter space, i.e., chose µ1, . . . , µsnap.
2 Evaluate the high-fidelity model at sample points.
3 Fit the surrogate model to the sampled data.
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Steps:
1 Sample the parameter space, i.e., chose µ1, . . . , µsnap.
2 Evaluate the high-fidelity model at sample points.

3 Fit the surrogate model to the sampled data.

Angelo Iollo Model Reduction CIMPA@HAMMAMET 60 / 82



Response Surface Model Reduction

Approximate the system response (e.g. RB latent variables) using a
surrogate model:

q̂(µ) =
n∑

i=1

ciϱi(µ),

where ϱi(µ) are basis functions, and ci are coe!cients. Both depend
on the parameter space sampling.
Common basis functions:

Polynomial (e.g., linear, quadratic).
Radial basis functions.

Steps:
1 Sample the parameter space, i.e., chose µ1, . . . , µsnap.
2 Evaluate the high-fidelity model at sample points.
3 Fit the surrogate model to the sampled data.

Angelo Iollo Model Reduction CIMPA@HAMMAMET 60 / 82



Projection-based MOR
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High-Dimensional Model

Nonlinear High-Dimensional Model:

dw

dt
= f(w(t), t), y(t) = g(w(t), t).

Initial condition:
w(0) = w0.

Variables:
w → RN : State vector.
y → Rq: Output vector, typically q ↗ N .

Function f defines the dynamics.
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Projection-based Reduced-Order Model (PROM)

The goal is to construct a Projection-based Reduced-Order Model
(PROM):

dq

dt
(t) = fr(q(t), t)

y(t) ↑ gr(q(t), t)

where:
q → Rk: Vector of reduced-order state variables, k ↗ N
y → Rq: Vector of output variables
fr(·, ·) → Rk: reduced dynamics
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Residual of the model

The residual r(t) → RN is introduced by approximating w(t) as Vq(t),
where V → RN↑k is the matrix whose columns are the POD modes:

V
dq

dt
(t) = f(Vq(t), t) + r(t) ⇔⇑ r(t) = V

dq

dt
(t)↓ f(Vq(t), t)

Constrain this residual to be orthogonal to a subspace W defined by a
test basis W → RN↑k – that is, compute q(t) such that

WT r(t) = 0

This leads to the governing equations of the Petrov-Galerkin PROM

WTV
dq

dt
(t) = WT f(Vq(t), t)

If W = V the projection method is called a Galerkin PROM
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Characterizing the Error of PROM Solutions

Error of the solution computed using a PROM relative to the solution
obtained using the HDM:

EPROM(t) = w(t)↓ w(t) = w(t)↓Vq(t)

Assume a Galerkin projection and an associated orthogonal basis V

The error vector can be decomposed into two orthogonal components:

EPROM(t) = w(t)↓!Vw(t) +!Vw(t)↓Vq(t)

= (IN ↓!V)w(t) +V
(
VTw(t)↓ q(t)

)

= EV↔(t) + EV(t)
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Error Components in PROM

Error component orthogonal to V:

EV↔(t) = (IN ↓!V)w(t)

Interpretation: The exact trajectory does not strictly belong to
range(V) ⇑ projection error
Error component parallel to V:

EV(t) = V(VTw(t)↓ q(t))

Interpretation: An "equivalent" but di#erent dynamical system is
solved ⇑ modeling error
Sometime EV↔(t) can be computed without executing the PROM and
therefore can provide an a priori error estimate
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Orthogonal Galerkin Projection and Error ODE

Consider the case of a Galerkin projection
One can derive an ODE governing the behavior of the error
component lying in V in terms of that lying in V⇒

In the case of an autonomous linear system

dw

dt
(t) = Aw(t)

the error ODE has the simple form

dEV
dt

(t) = VVTA (EV(t) + EV↔(t)) = !VA (EV(t) + EV↔(t))

where EV↔(t) acts as a forcing term.
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Linear Error ODE Solution

The solution of the ODE is:

EV(t) = e$VAtEV(0) +

∫ t

0
e$VA(t↓↽)!VEV↔(▷) d▷.

For EV↔ = 0, we have the energy estimate of the homogeneous

solution:

↘EV(t)↘22 = EV(0)⇐e($VA)→te$VAtEV(0).

Bounds:

Define M(t) = e($VA)→te$VAt.
Energy satisfies:

↘EV(t)↘22 ⇓ ↘e$VAt↘22 ↘ EV(0)↘22,

where ↘e$VAt↘22 = ωmax(M(t)) and ωmax is the largest eigenvalue of
M(t).
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Energy of the Inhomogeneous Solution

For EV↔ 7= 0, we have

↘
∫ t

0
e$VA(t↓↽)!VEV↔(▷) d▷↘2 ⇓ sup

↽↗[0,t]
↘e$VA(t↓↽)↘2

∫ t

0
↘EV↔(▷)↘2 d▷

Energy Estimate:

↘EV(t)↘2 ⇓ C1↘EV(0)↘2 + C2

∫ t

0
↘EV↔(▷)↘2 d▷,

where:
C1 = ↘e$VAt↘2
C2 = sup↽↗[0,t] ↘e$VA(t↓↽)↘2

C1 and C2 are can be bounded by a function of t and the eigenvalues of
!VA.
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Collocated MOR
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From PDE to ODE: Spatial Semidiscretization

PDE:
⇀w

⇀t
+ L(w;µ) = f(x, t;µ), w(x, 0;µ) = w0(x;µ),

where:
w(x, t;µ): Solution in space x → ’ and time t ≃ 0 for parameter
µ → P.
L(w;µ): Spatial di#erential operator.
f(x, t;µ): Source term.

Spatial Semidiscretization: Let ’ be a computational domain defined as:

’ =


!i↗S
’i, with S = {TS},

where {TS} represents a set of non-intersecting polytopes such that:

’i ∀ ’j = ∃ for i 7= j, and


!i↗T
’i = ’.
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Quadrature rule and Weighted Scalar Product

Definition:

Let the space discretization of two scalar functions u and v defined
over over ’ be u,v → RN :

u = [u1, u2, . . . , uN ]T , v = [v1, v2, . . . , vN ]T .

Weighted Discrete Scalar Product:

∫

!
u v dx ↑ (u,v)D = uTDv =

N∑

i=1

2iuivi,

where:
D → RN↑N is a diagonal weight matrix :

D = diag(21(’1), 22(’2), . . . , 2N (’N ), 2i > 0.

2i: weights related to quadrature rules and the grid.
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Projection onto Reduced Space by Hyper-Reduction

Key Idea: Instead of q(t), the coe!cients of the basis, we will use a
subset of the components of w(t), wj↗J(t) with J ↔ {1, . . . , N}, as the
independent variables of the problem.

O!ine stage: the HDM generates a database of Nsnap snapshots w(ti)
defined on the grid cells ’1,’2, . . . ,’N . As before they are collected in a
matrix S → RN↑Nsnap .

POD Problem Reformulation:

min
V↗RN↗k

↘S↓VVTDS↘2FD
subject to VTDV = I

Def: Weighted Frobenius Norm:

↘A↘FD := tr(ATDA)
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Solution and Projection Representation

Let: S̃ = D↓1/2S, then the previous POD problem becomes again:

min
Ṽ↗RN↗k

↘S̃↓ ṼṼ
T
S̃↘2F subject to Ṽ

T
Ṽ = I

where Ṽ = D↓1/2V.

Therefore:

S̃ = Ũ!̃Z̃
T
=

[
Ũr ŨN↓r

] [!̃r 0
0 0

]
Z̃
T

and hence:

” = D↓1/2Ũr.

The POD modes are recovered by a standard SVD and (”,”)D = I.
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Hyper-reduction

As before, we take a subset of k columns of ” to define V → RN↑k,
according to an energy criterion. We denote by εij the element of row
i and column j of V.

Consider now
q(t) = {qi(t)}1→i→k = (V,w(t))D =

∑N
j=1 2jwj(t)εij



1→i→k

We can approximate the discrete scalar product above by a quadrature:
q(t) = {qi(t)}1→i→k = (V,w(t))D ↑

∑
j↗J 2̃jwj(t)εij



1→i→k
where

J ↔ {1, . . . , N}.
The empirical quadrature weights 2̃j and points are determined to best
approximate the original projections.
To do that, define:

Gi =




w1(t1)εi1 · · · wN (t1)iN

... . . . ...
w1(tNsnap)εi1 · · · wN (tNsnap)εiN )



 → RNsnap↑N
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Non-Negative Empirical Weights and Sparsity

Define also:

di =





∑N
j=1 2jwj(t1)εij

...∑N
j=1 2jwj(tNsnap)εij



 → RNsnap

The objective is to find non-negative empirical weights 2̃ =

2̃j


j↗J
and a set J ↔ {1, . . . , N} to promote sparsity, accurately
approximating the projections.
This problem can be formulated as:

2̃ = argmin
⇀↗%

↘2↘0,

$ = {2 → RN
+ : ↘G2 ↓ d↘2 ⇓ φ↘d↘2}

G → RkNsnap↑N and d → RkNsnap are the concatenation of Gi and di

for each one of the k-dimensional POD basis.
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Non-Negative Empirical Weights and Sparsity

The problem 2̃ = argmin⇀↗% ↘2↘0, is NP-hard.

It is approximated by solving a the Non-Negative Least Squares
problem (C. Farhat):

2̃ = arg min
⇀↗RN

+

↘G2 ↓ d↘22,

using the Lawson-Hanson algorithm.

This algorithm encourages sparsity in the solution and ensures that the
solution meets the error tolerance φ, i.e., ↘G2 ↓ d↘2 ⇓ φ↘d↘2.

The resulting empirical weights 2̃ are then used to select a reduced set
of quadrature points, corresponding to the non-zero weights.
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Collocation and Hyper-Reduced Prolongation Operator

We have now the approximation:
q(t) = {qi}1→i→k = (V,w(t))D ↑

∑
j↗J 2̃jwj(t)εij)



1→i→k
, where

J ↔ {1, . . . , N} is a small set of quadrature points.

Hence:

dq(t)

dt
=


dqi
dt

}

1→i→k

=





∑

j↗J
2̃jεij

dwj(t)

dt





1→i→k

For i → J we obtain

dwi(t)

dt
=

N∑

m=1

Aimwm(t) =
N∑

m=1

Aim

k∑

s=1

εsm

∑

j↗J
2̃j εsjwj(t).

We conclude that to advance w(t) in time, one only needs advance
the solution at the quadrature points using the same spatial
discretization of the HDM, i.e., the same scheme.
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Remarks

Traditional hyper-reduction methods focus on reducing the
computational cost of assembling matrices for the discrete projection
of non-linear terms.

The present approach hyper-reduces the discrete solution projection
operator itself.
Objective: Identify a subset of cells in the computational domain for
local solution of the HDM.
Steps:

1 Solve the HDM locally in selected cells.
2 Extend the local solution to local stencils.
3 Propagate the solution to the rest of the domain.

Error analysis follows the same path as that shown before, with an
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Closure Models
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Neural Correction for Residual Dynamics (L. Mathelin)

Recall that the residual r(t) → RN is introduced by approximating
w(t) as Vq(t):

V
dq

dt
(t) = f(Vq(t), t) + r(t) ⇔⇑ r(t) = V

dq

dt
(t)↓ f(Vq(t), t)

Objective: Address the impact of unresolved dynamics in ROM using a
neural correction term.

Corrected Dynamics:

dq

dt
= VT f(Vq(t), t) +R(y),

where:
f(Vq(t), t): Resolved dynamics.
R(y): Neural correction term, learned from data.
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Memory term

Memory Evolution:

dy

dt
= E(y)↓#y,

where:
y: Memory variable. E(y): Coupling term learned from data.
#: Dissipative operator for stability.

Key Features:

Neural networks approximate R(y) and E(y).
Applicable to systems with scarce and noisy data.

Outcome:

Significantly improved predictions compared to classical ROM.
E!cient handling of long time horizons and unresolved dynamics.
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