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TREASURE, for Treatment and Sustainable Reuse of Effluents
in semiarid climates, is a scientific Euro-Mediterranean research
network associating research labs and researchers from Southern
Europe and Northern Africa countries about biological wastewater
treatment plants and microbial ecosystems. At its origins, in 2006,
the involved partners only consisted of academics from France,
Algeria, ltaly and Tunisia. Today the principal partners are located
in Kenitra, Montpellier, Narbonne, Sfax, Tlemcen and Tunis.

® Jérome Harmand, DR, INRA, Narbonne
® https://www6.inra.fr/treasure/
e PHC Tassili, Toubkal, Utique

TREASURE
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Treasure Network

20 defended PHD: Manel Dali Youcef (Montpellier, 2022), Sarra
Nouaoura (Tunis, 2021), Kenza Boumaza (Montpellier, 2021),
Farouk Aichouche (Narbonne, 2021), Emna Krichen (Montpelier,
2020), Fatima Zahra Tani (Montpellier, 2019), Mohamed Dellal
(Sidi Bel Abbes, 2019), Bachir Bar (Tlemcen, 2019), Mokhles
Kouas (Narbonne-Gabes, 2018), Nesrine Kalboussi (Tunis, 2018),
Maha Hmissi (Sfax, 2018), Zineb Khedim (Tlemcen, 2018),
Yessmine Daoud (Montpellier-Tunis, 2017), Walid Bouhafs (Tunis,
2016), Sonia Hassam (Tlemcen, 2015), Amel Ghouali
(Montpellier-Tlemcen, 2015), Amine Charfi (Tunis, 2014),
Radhouane Fekih Salem (Montpellier-Tunis, 2013), Boumediene
Benyahia (Tlemcen-Montpellier, 2012), Miled El Hajji
(Montpellier, 2010).

. on going PHD : Benaissa Dekhici (Tlemcen), Tahani Mtar
(Tunis), Hayat Berhoune (Tlemcen).
Many Seminars since 2006: Tunis, Hammamet, Montpellier,
Narbonne, Tlemcen, Marrakech.
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MEH (Miled EI Hajji)

MATHEMATICAL BIOSCIENCES doi:10.3934/mbe.2010.7.641
AND ENGINEERING
Volume 7, Number 3, July 2010 pp. 641-656

A MATHEMATICAL STUDY OF A SYNTROPHIC
RELATIONSHIP OF A MODEL OF
ANAEROBIC DIGESTION PROCESS

MiLED EL HAJJ1 AND FREDERIC MAZENC

UMR Analyses des Systémes et Biométrie, INRA 02 Place
INRA-INRIA MERE research team
Viala, 34060 Montpellier, France

JEROME HARMAND

LBE-INRA, UR050, Avenue des Etangs
11100 Narbonne & INRA-INRIA MERE research team
UMR Analyses des Systémes et Biométrie, INRA 02 Place Viala
34060 Montpellier, France

(Communicated by Yang Kuang)
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MEH : syntrophy

MATHEMATICAL BIOSCIENCES doi:10.3934/mbe.2012.9.627
AND ENGINEERING
Volume 9, Number 3, July 2012 pp. 627-645

THE MATHEMATICAL ANALYSIS OF A SYNTROPHIC
RELATIONSHIP BETWEEN TWO MICROBIAL SPECIES
IN A CHEMOSTAT

TEWFIK SARI

Irstea, UMR ITAP, 361 rue Jean-Francois Breton 34196 Montpellier, France
& Modemic (Inra/Inria), UMR Mistea, 2 place Viala, 34060 Montpellier, France

MiLeD EL HaJit

ISSATSO (Université de Sousse) Cité Taffala, 4003 Sousse, Tunisie
& LAMSIN-ENIT, Université Tunis El-manar BP 37, 1002 Tunis, Tunisie

JEROME HARMAND

INRA URO0050, Laboratoire de Biotechnologie de I’Environnement
Avenue des Etangs, 11100 Narbonne, France
& Modemic (Inra/Inria), UMR Mistea, 2 place Viala, 34060 Montpellier, France

(Communicated by Patrick de Leenheer)
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Boumédiéne Benyahia (AM2,
Commensalism)

Journal of Process Control 22 (2012) 1008-1019

Contents lists available at SciVerse ScienceDirect

Journal of Process Control

journal homepage: www.elsevier.com/locate/jprocont

Bifurcation and stability analysis of a two step model for monitoring anaerobic
digestion processes™

B. Benyahia®?*, T. Sari®, B. Cherki?, J. Harmand "4
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Yessmine Daoud (Syntrophy)

Mathematical Biosciences 275 (2016) 1-9

Contents lists available at ScienceDirect

Mathematical

Mathematical Biosciences

\
5 q \
journal homepage: www.elsevier.com/locate/mbs

A model of a syntrophic relationship between two microbial species @CWM
in a chemostat including maintenance

Tewfik Sari*¢*, Jérome Harmand®

“Irstea, UMR ITAP, 361 rue Jean-Francois Breton, 34196 Montpellier, France
b INRA, UR050, Laboratoire de Biotechnologie de I'Environnement, 102 Avenue des Etangs, Narbonne F-11100, France
©Université de Haute Alsace, LMIA, 4 rue des Fréres Lumiére, 68093 Mulhourse, France
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Yessmine Daoud (Syntrophy)

Math. Model. Nat. Phenom. 13 (2018) 31 Mathematical Modelling of Natural Phenomena
https://doi.org/10.1051 /mmnp/2018037 www.mmnp-journal.org

STEADY STATE ANALYSIS OF A SYNTROPHIC MODEL: THE
EFFECT OF A NEW INPUT SUBSTRATE CONCENTRATION

Y. Daoup'?*, N. ABDELLATIFY®, T. SARI®® AND J. HARMAND?
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Yessmine Daoud (Syntrophy)

SIAM J. APPLIED DYNAMICAL SYSTEMS (© 2021 Society for Industrial and Applied Mathematics
Vol. 20, No. 3, pp. 1621~1654

A Mathematical Model of Anaerobic Digestion with Syntrophic Relationship,
Substrate Inhibition, and Distinct Removal Rates*

Radhouane Fekih-Salem, Yessmine Daoud®, Nahla Abdellatif®, and Tewfik Sari¥
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Mathematical model

51 = D (5{" — 51) — k1/L1 (51, 52))(17

X1 = (a1 (51, %) — D) X,

D (S — S5) + kapa (S1, 52) X1 — kopo (S1, 52) Xo,
Xo = (p2(51,52) — Do) Xa,

Il

X;: concentration of species i = 1,2

Sj: concentration of chemical j = 1,2

S;" : inlet concentration of chemical j = 1,2

ki, i =1,2,3 are yield factors

D = 1/HRT is the dilution rate (HRT is the hydraulic
retention time)

® D; = «;D + a;: disappearance rate of species i

a; : death (or decay) rate parameters

® «; €[0,1], i = 1,2, represents the biomass proportion that

leaves the bioreactor.
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Hypotheses on growth functions

5_1 = D(S"—Sy) — kip (51, 52) X1,
X1 = (p1(51, %) — D) X,
Sy = D(SF — S2) + kapa (51, 52) X1 — kopia (51, S2) Xe,

X = (p2(51,52) — D2) Xz,
® For S, >0, we have p1(0,5,) =0
® For 51 > 0and S, > 0, we have
%(51, 52) > 0, agl (51, 52) < 0

S,
® For 5; >0, we have pp(51,0) =0
® For 51 >0 and S, > 0, we have
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Hypotheses on growth functions

1#1(0,5) =0, 24(51,%) >0, Z4(5.,5) <0
,u2(51,0) =0, d’“2 (51 52) > 0, 0/12(51, 52) <0

These Hypotheses 5|gn|fy that no growth takes place for
species i = 1,2 without substrate S;, and the growth increases
with §;, while it is inhibited by the other substrate S;, j # i

the first organism is inhibited by its product S, (the food of
the second organism)

the second organism is inhibited by the food S; of the first
organism

Inhibition is not mandatory (because %(51,52) <0 and
§2(51,%) <0)
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Examples of growth functions

S1 = D(S—S1) — ki (51, $)X%,

X1 (11 (51, 52) — D1) Xa,

5 D (8" — S5) + kap1 (S1,52) X1 — kopo (51, 52) Xo,
Xo = (n2(51,52) — D2) Xz,

m1 Sy 1 my S, 1
51,%) = 51,%) =
#(1,52) Ki+S511+4+ L[5 H2(S1, 52) Ko+51+ 1,5

® m; is the maximum specific growth rate,
® K; is the half saturation constant.
® [; : strength of inhibition of species i by chemical j

® If L; =0, then there is no inhibition (u; depends only on S;)
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Microbial communities

J OJORO @/ 6w

Case C1 Case C2 Case S1 Case S2
Case p2
_ _m$5 _ _m5
Cl 51) = 1S 5) = 11e

miS1 1 my Sy
S1 51, 52) — Ki+S1 1+%252 52 ) K2+52

_midS 2 1
S2 51, 52) K151 1405 St 52) — K2+52 1+L:5;

i o

2 p(S1) = 2% 1251, %) = $3% s
pa( o
pia pia
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Commensalism and Syntrophy

Case C1 (L; = Lo = 0), is an example of pure commensalism,
where the second population (the commensal population)
depends for its growth on the first population (the host) and
thus, benefits from its interaction, while the host population is
not affected by the growth of the commensal population.
Case C2 (L; > 0 and L, = 0), is also an example of
commensalism, since the first population is not affected by the
growth of the second population.

Case S1 (L =0 and Ly > 0) and Case S2 (L; > 0 and

L, > 0), are not commensal, since the first population is
affected by the growth of the second population.

In S1, the first organism is inhibited by the substrate S,.
Hence, the growth of X; depends on the efficiency of the
removal of the product S, by the bacteria X5. Therefore, each
population needs the other one for its growth (there is a
syntrophic relationship between them).
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Reduction (kl = k2 = k3 = ].)

We use the following change of variables :
51 = k351/k13 S]I:n — le:{n/k:),, Sy = 527 Séln — Sé'na

X1 = k3X1, Xo = ko X5.

s = D(si"—s1)— fi(s1,%)x,

i = (f(s1,%)— D1)x,

= D(si"—s)+f(s,)x1— h(s,s)x,
X = (f(s1,%)— D2) x,

fi(s1, s2) = p1 (kssi/ki, s2),  fa(s1,52) = po (k3si/ ki, s2)
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Graphical method

We use the graphical method of Tilman, complemented by Ballyk
and Wolkowicz, to determine the outcome of competition between
two species for two resources. Although our system is not a
competition model, it appears that the concepts introduced by
these authors are very useful to understand the existence and
stability of equilibrium points in our commensalism and syntrophy
models.

D. Tilman. Resources: a graphical-mechanistic approach to competition and
predation. American Naturalist 116 (1980) 362-393.

D. Tilman. Resource competition and community structure. Princeton
University Press, New Jersey (1982).

M.M. Ballyk, G.S.K. Wolkowicz, Classical and resource-based competition: a
unifying graphical approach, J. Math. Biol. 62 (2011) 81-1009.
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Outline of the method

Find the feasible set

Find the FSBs (Feasable Set Boundaries)
Find the ZNGls (Zero Net Growth Isoclines)
Find the equilibria

Determine their stability conditions
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The feasible set

Definition: The feasible set F in (s1, sp)-space, is the set
where the (s1, sp)-coordinate of any equilibrium point must be
located.
e F={(s1,%)€R?:0< 5 <si" 0<s +s<si"+ s}
® Let (s1,x1, 52, x2) be an equilibrium point. We have

0= D (5{" — 51) — f1 (51, 52)X1

0= (f(s1,%)— Di)x

0= D (Sé.n — 52) +f (51,52)X1 —h (51,52)X2

0= (f(s1,5)— D2)x
Exercise : prove that

xlzD%(S;{"—SQ, X2—D2 (51 +5£n_51_52)'

Therefore, the equilibrium points concentrations x; are
positive if and only if

0<s <sf, 0< s +5<s"+ sy

24 /121



The feasible set boundary (FSB)

The boundary of F consists of two portions of the coordinate axes,

together with two curves, namely the feasible set boundary for
population i, FSB;, i = 1,2, defined as follows

FSBq (s1,%) €C:s1=s",0< s < s}

/
1 - o '
FSBy = {(s1,%) €C: 0 < 51 < 5,51+ 5 = sf" + s}

X1=D%(S{"—51), X2:DQ2(S{"+S£”—51—S2)-

° |f (51752) € FSB;1 then x; =0
® If (s1,5) € FSBy then x» =0

These curves are plotted in green and red respectively in the figure.
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The feasible set and its boundary (FSB)

$2 ZNGI 52 ZNGI»
/

in in| / in in|
1 2 / 51+ sy

e F={(s1,%)€C:0<s5 <s", 0<s+s<s/"+s}
® FSBy = {(s1,5) €C:51=5i",0< s <"}
® FSBy = {(s1,5) €C:0< s <sj" 51+ 5 =sj"+s"
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The zero net growth isocline (ZNGlI)

The ZNGlI for population i (ZNGI; ) is the curve of substrate
concentrations along which the decline in biomass density is
balanced by its growth.

ZNGI, = {(51,52) eC: f2($1,$2) = Dz}

If (51,52) € ZNGI; then xy =0
If (51, 52) € ZNGI; then x, =0

We plot the ZNGI; in (s1, sp)-space using the same color used
for population i as used for its FSB;
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The FSB and the ZNGlIs

s+ s

in

syl

in S1

e o
T (b) st

Each intersection of a green curve and a red curve in the feasible
set corresponds to an equilibrium point, as depicted in the figure.
More precisely, we have the following result.
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Equilibria

The intersection point (si", si") = FSB; N FSB; corresponds
to the washout equilibrium Ey = (si", 0,557, 0) where both
species are extinct.

Any point (51,5,) € ZNGI; N FSB; corresponds to a
boundary equilibrium E; = (51, X1, 52, 0), where species 2 is
absent and species 1 is present.

Any point where (3;,3;) € FSB; N ZNGI, corresponds to a
boundary equilibrium E; = (51,0, 3, %2), where species 1 is
absent and species 2 is present.

Any point (s}, s3) € ZNGI; N ZNGI, lying in the interior F°
of the feasible set F corresponds to a coexistence equilibrium
E. = (s1,x{,s5,x3), where both species are present.
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Proof

Let (s1,x1, S2, x2) be an equilibrium point. We have

0=D (s{" — 51) — f(s1,%)x (
0=(f(s1,%)— Di)x (
0=D (s — %)+ fi(s;,)x — f(s1,%) % (3)
0=(f2(s1,%) — D2) x (

® Assume that x; = 0 and x» > 0 (a boundary equilibrium point E)

® From x; = 0 and (1) we deduce that s; = si".

® Using now x2 > 0, from x» = D% (s{” + 55" — 51 — 52) = D% (sé" — 52) we

deduce that s, < si". Since
we have

® From x2 > 0 and (4) we have f(s1,s) = D». Therefore, using
ZNGI; = {(s1,52) € C : f(s1,52) = D2} we have (s1,s2) € ZNGL.

® Hence, (s1,5) € FSB1 N ZNGI,.
® Exercise : give the details of the proof in the other cases.
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Existence and stability of equilibria
S 52 ZNGIQ

0 in S1

(b) 57

® Stable equilibria are plotted with a solid circle, and unstable
ones with a circle.

® Panel (a): A unique stable coexistence equilibrium E.

e Panel (b): Multiple positive equilibria E! and E2 , exhibiting
bistability of E! and E;

31/121



Existence and stability of equilibria

We need hypotheses on f; and £
We use the notations f;; = 0f;/0s;, i,j = 1,2.

For all s; > 0, s, > 0 we have 1(0,s) =0, f1(s1,52) >0
and f12(51,52) S 0.

For all s >0, s, > 0 we have f(s1,0) =0, Hi(s1,5) <0
and f(s1, 52) > 0.

Let g1(s2) = fi(+00, 52) = supg =g fi(s1, %2).
Let g2(s1) = fa(s1, +00) = supg,~q 22(s1, 52).

_ 1 _ 1
fl(Sl, 52) - gfél 1+Losy f2(51’ 52) - fg?:; 1+L1sy
ae) = nh, &)= iy
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The break-even concentrations

For s, > 0 and D € [0, g1(s2)), the break-even concentration
s1 = A1(D, sp) is the unique solution of f1(s1,s) = D, i.e.

S1 = /\1(52, D) < f1(51,52) =D.

This solution exists and is unique since f11(s1,s2) >0

We have ZNGI; = {(s1,52) € C: s1 = A\1(s2, D1)}

For s > 0 and D € [0, g2(s1)), the break-even concentration
s» = A2(s1, D) is the unique solution of f(s1,s) = D, i.e.

So = )\2(51, D) < f2(51,52) =D.

This solution exists and is unique since fx(s1,s2) >0
We have ZNGI, = {(s1,52) € C: 5o = \ao(s1, D2)}
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The regions L1, R1, Ay and B, of F

e /NGI; = {(s1,s) € C: fi(s1,s) = D;} divides the feasible
set F into two connected possibly empty, regions

L1 ={(s1,%) € F: f(s1,%) < D1},
R1={(s1,%) € F: fi(s1,5) > D1}

e INGIp = {(s1,5) € C: f2(s1,5) = D, } divides the feasible
set F into two connected possibly empty, regions

By = {(s1,%) € F: f(s1,5) < D>},
Az = {(51752) €F: 7(2(51,52) > D2}

® Exercise : give the details of the proof
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Regions L1, R1, Ay and B, of F

s2 NG, 52 ZNGI,
st 4 st / st st

in|.

52

® Panel (a): A unique stable coexistence equilibrium E.
® Panel (b): Multiple positive equilibria E} and E2 , exhibiting
bistability of £} and E;
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Main result

Theorem

Existence condition  Stability condition (local)

Ep Always exists (sin, sih) € L1N By

Er (si"sih) e Ry (51,5) € Bo

E, (S{", Sé") € Ay (§1,§2) Sy

E. (sf,s3)e F° (h1f2 — fi2h1)(s7,s3) >0

Remark. The condition (f11f2 — fi2f1)(s),s3) > 0 means that the
ZNGIs intersect transversally at (s7,s3) and ZNGI, crosses ZNGI;
from the left to the right
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52 52 ZNGI,

sin 4 giny C"Jin + s'én
Sin A Sin )
Ey, ~7ZNGIy
As

B

E.
0 (a) Slin S1 0

On panel (a)

® Fy is unstable since (si",si") ¢ £1 N By,

® F exists since (s{", si") ¢ Ry and is unstable since
(51,%) ¢ B2,

e [ exists since (s1",s5") € Az and is unstable since
(s17,%2) ¢ L1

e F_ is stable since, ZNGI> crosses ZNGI; from the left to the
right.

37/121



87177, + S’LZn

in| .
2

On panel (b)
® Fy is unstable since (si",si") ¢ L£1 N Ba,
® £ exists since (s{", si") ¢ Ry and is stable since (51,3) € Ba,
® £, does not exist since (s, s") ¢ A
o EC1 is stable since, ZNGI> crosses ZNGI; from the left to the
right and Ef is unstable since, ZNGI, crosses ZNGI; from
the right to the left.

38/121



Existence and stability of equilibria
The system can have four types of equilibria:

® The washout equilibrium Ey = (s{", 0, si" 0), which always
exist. It is stable if and only if

fi(si", si") < Dy and fi(s]",s5") < Dy ice. (si",s5") € £1 N Bo

® A boundary equilibrium E; = (51, X1, 52, 0), with
(51,5) = ZNGI; N FSBy, where 51 is a solution of equation

fi(s1, S{n + Sé.n —s1)=D; (5)
and
Sp = S{n + Sé-n -5, X1= DQI (S{n - §1) . (6)

It is unique if it exists.
It exists if and only if f(s]",s)") > Dy, i.e. (s]",s)") € Ry.
It is stable if and only if £(51,5) < Dy, i.e. (51,5) € Bo.
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Existence and stability of equilibria
® A boundary equilibrium E; = (31,0, 5, X2), with
(§1, §2) = FSB; N ZNGI5,, where
§1 = S{", §2 = )\2(5{", DQ), )NQ = D22 (Sé-n — §2) (7)
It exists if and only if f(s{", s)") > Dy, i.e. (s]",s)") € Ao.
It is stable if and only if f1(31,%) < Dy, i.e. (51,5) € L.
¢ Coexistence equilibria Ec = (s7, X7, 55, x3), with
(sf,s5) € ZNGI; N ZNGIy, where (s{,s3) is a solution of the
system of equations
fi(s1,52) = D1, f(s1,) = Ds. (8)
and
*:Q(in_* * _ D (.in in __ ok * 9
X =p (s"=s), g=p 6"+ —ss—x). (9)
It exists if and only if (s7,s5) € F°. It is stable if an only if
(f1f2 — fi2f1)(s1,55) >0 (10)
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Proof for existence

For E1 = (§1,)_(1, S, 0) we have (§1, §2) = ZNGI; N FSB..

This condition is equivalent to
f1(§1, 52) =D and ST+ 5= 5{" =+ Sﬁn (11)
From the second formula in (11), we have 5 = s{” + s’ — 5; which proves (6).
Replacing 3, in the first formula of (11) we have f1(§1,s{" + s — 51) = Di.
Therefore 5 is solution of equation (5).
The equation (5) is equivalent to 11(s1) = D1, where 1(s1) is defined by
di(s1) = sy, st + 85" — 51)

We have 91 (s1) = (A1 — fi2)(s1, 57" + s§" — s1) > 0.
Therefore equation (5) has at most one solution. Hence, if it exists, E; is unique.

E; exists if an only if equation 11(s1) = D1 has a solution in the interval (0, s{"). Since
¥1(0) = 0 and ¥1(s7") = fi(s1", s57), the solution exists if an only if fi(s{",sy") > Ds.
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Proof for stability

x1 = (fi(s1,5)— D1)x,

o = (f2(s1,%) = D2)x,

51 = D (Si" —s1) — fi (s1,%)x1,

S = D (Sén — 52) +f1 (51./ 52)X1 —f (51, 52)X2.

The local stability of an equilibrium point depends on the sign of
the real parts of the eigenvalues of the corresponding Jacobian
matrix for the system:

fi— Dy 0 fiix fiox
J— 0 fr — Dy f1x0 foxo
—fi 0 —D — fitxq —fiox1
fi —f  fuxi — hixa —D+ fiaxy — foxo

where f; and f;; = % are evaluated at the components
)

(x1, %2, 51, 52) of the equilibrium point.
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Sability of £,

At Eg, x1 = 0 and x; = 0. The Jacobian matrix becomes

fi (sin, si") — Dy 0 0 0
I 0 f(sinsiy)—-D, 0 O
° —f (s1",5) o~ b0
h(st",s5) —f (", 53") 0 -D

Its eigenvalues are \; = f; (s]",s5") — D1, Ao = £ (s}", ") — D,
and A\3 = Ay = —D. Therefore Ey is stable if and only if A\; <0

and A\ < 0, that is to say

A(shosf) <D and (s sf) < Ds
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Stability of £
At E1, xo =0 and x; > 0, so that f; = D;. Evaluated at Ej, the
Jacobian matrix becomes:

0 0 fiix fiaxy
S| 0 h-D 0 0
R ) 0 —D — fi1xq —fax
Dy —h fi1xq —D + fiox

Its characteristic polynomial is:
Pi(A) = (A +D)A—Hh+ D)X\ + ar+ o)

where ¢c; = D + (f11 — f12)X1 and oo = Dl(fll — f12)X1.

The eigenvalues of J; are \; = —D, Ao = £ (51,52) — Dy, together
with A3 and A4, the roots of the quadratic polynomial in P1()).
Since f11 > 0 and f1» <0, one has ¢; > 0 and ¢ > 0. Hence, A3
and A4 have negative real parts. Therefore Ej is stable if and only
if Ao <0, that is to say

f(51,52) < D1
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Stability of £,
At E;, xy =0 and x» > 0, so that f, = D». Evaluated at E», the
Jacobian matrix becomes:

fi — Dy 0 0 0
g — 0 0 hixz fax2
271 —A 0 -D 0
A —Dy —fHhixa —D — fiax

Its characteristic polynomial is:
Py(\) = (A — fi + D1)(A + D)\ + aA + &)

where C1 = D+ f22X2 and Cy = DQf2X2
The eigenvalues of J, are \; = f1 (51,5) — D1, Ao = —D, together
with A3 and A4, the roots of the quadratic polynomial in Py(\).
Since f» > 0, one has ¢; > 0 and ¢ > 0. Hence, A3 and A4 have
negative real parts. Therefore E; is stable if and only if A\; <0,
that is to say

fl (§1, §2) < Dy
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Stability of E.
At E., x1 > 0 and x» > 0, so that f = D; and , = D,. Evaluated
at E., the Jacobian matrix becomes:

0 0 fiixa flax

J = 0 0 f1x2 faax2

| -Di 0 —D-fiix —fax
D1 —D> fix1—faxe —D — fioxy — fxo

Its characteristic polynomial is:

Pe(\) = XN 4+ aX + o\ 4+ )+ o)

where

a =2D+ (A1 — fi2)xi + foxo

c2 = D>+ (D + Di)(fir — fi2)x1 + (D + D2)faoxo + (finfaz — Frofor)xixe

¢z = DDy (fi1 — fi2)x1 + DDzfopxo + (D1 + D2)(firfar — oo )xixo

¢y = D1Ds(hi1fr — fiafor)xixe
The eigenvalues are of J. have negative real parts if an only if the
Routh-Hurwitz conditions are satisfied:

a>0, >0, >0 and n=cac—ca—c >0. (12)
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Stability of E. (continued)

Since fi1 > 0, fip < 0 and f5 > 0 we see that ¢; > 0

From ¢4 = D1D2(f11f22 — f12f21)X1X2 we see that ¢4 > 0 if and
onIy if fi1foo — fiofa1 >0

If fi1fo — fiofr1 > 0 we deduce that ¢c3 >0

If fi1foo — fiofor > 0 we can also prove that r > 0 (very
technical and difficult !)

Hence the conditions (12) are satisfied if and only if
fiifo — fiafo1 > 0.
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Sommaire

@O The operating diagram
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Operating parameters

We consider the space of the operating parameters (SOP)
defined by

SOP := {(D7 sin M eR3:D>0,s">0,s"> 0}

We fix the biological parameters, i.e. the growth functions f;
and f» and the parameters «; and a;, i =1, 2.

The operating diagram has the operating parameters as its
coordinates and the various regions defined within it
correspond to qualitatively different asymptotic behaviors.

We begin with the simple cases C1, C2 and S1
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Operating diagram

® Since the system has three operating parameters, and it is not
easy to visualize regions in the three-dimensional operating
parameter space, we fix the dilution rate D and we show the
operating diagram in the operating plane (s, si™). The
effects of D can be shown in a series of operating diagrams.

® The curves

rl—{51,52 ESOP'fl(sl',SZ') Dy =a1D+ a1}
rg—{ /n m GSOP f2( i /n) D2—012D+32}

play an essential role in the construction of the operating
diagram

® Even though ' and 'y are defined by the same equations as
ZNGI; and ZNGI5, it should be noted that the I'; are curves
in SOP while for ZNGI;, they are curves in C
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Outline of the method

Find the feasible set

Find the FSBs (Feasable Set Boundaries)
Find the ZNGls (Zero Net Growth Isoclines)
Find the equilibria

Determine their stability conditions
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F, FSB and ZNGlI

$1 = D (S{n — 51) — fl (51, 52)X1,
xi = (f(s1,%)— Di)x,
s = D (Sén — 52) +f (51, 52)X1 — 1 (51, 52)X2,
x2 = (f(s1,%2) — D2)xe,
_ D in
At equilibria : { = Dy (Sln B 51.3 ’
=175 (5" +s3 — 51— ).

F={(s1,%) €R?:0< s <si" 0<s +s <s"+si}

. { FSBy = {(s1,) € C:s1 = sin0<s < sﬁ”}

FSBy = {(s1,%) €C:0< s < s}, 51 + 5 = 5" + sl

N { ZINGI; = {(s1,%) € C: fi(s1,5) = D1}

ZNGI; = {(s1,s2) € C : fa(s1,52) = Do}

x| = 0 <— (51,52) < FSB1 or (51352) S ZNGIl
X0 = 0 <— (51752) S FSB2 or (51,52) € ZNGIQ
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Main result

Theorem

Existence condition  Stability condition (local)

Ep Always exists (sin, sih) € L1N By

Er (si"sih) e Ry (51,5) € Bo

E, (S{", Sé") € Ay (§1,§2) Sy

E. (sf,s3)e F° (h1f2 — fi2h1)(s7,s3) >0

Remark. The condition (f11f2 — fi2f1)(s),s3) > 0 means that the
ZNGIs intersect transversally at (s7,s3) and ZNGI, crosses ZNGI;
from the left to the right
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The cases C1, C2, S1 and S2

Case f; f>

C1 fl’(sl) >0 f2/(52) >0

C2 fl/(Sl) >0 f22 > 0 and f21 <0
S1 fir > 0and 15 <0 f2/(52) >0

S2

f11>0andf12§0

foo >0and 1 <0

54 /121



Cases C1, C2 and S1

52 52 52
sin+si Sin_"_si sin+si
LTSN By L TSRNLUE, 1 T8
n FE, in E, in
S L R 0 s
Ey
|
E. Es | o E. FEs
Ec T
e, 0 e, 0 o
n 1 wmn
5751 by s (c) s

0 (@)

Figure: The feasible set and the ZNGls for (a): C1, (b): C2 and (c): S1
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Operating diagram (D constant)

Iy Iy Iy

Ty
Ty
Ty
F3 Sﬁno F3 Szlno Fg szln
Model C2 Model S1

Ec E E, E!} E?| Color
o | S Red
7 | U S Yellow
| U S Blue
Is | U U S Green
.| U uU u S Green
s | U U S Green
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()perat|ng diagram (

constant)

O<s

s’no
< )\2 a2

sln()
0< sin

< )\2()\1 (al a2

O<3 <>\2a2
E; D
E :

I's

F?
> ,\2 (a2)

sln()
> Ao )\1 (a1), a2)

S1
in >ﬁl)\2(l12l

s

DA
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5
X1
)
X2

Pure commensalism

D (si" — s1) — fi (s1)xi,

(fi (s1) = D1) xa,

D (Sén — 52) -+ fl (51)X1 — fg (SQ)XQ,
(f2(s2) — Do) x2,

i f1(0) =0 and for s; > 0, fll(Sl) >0
® /,(0) =0 and for s, >0, fj(s2) >0
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ZNGls and equilibria

Table: Break-even concentrations and ZNGls.

Break-even concentrations and ZNGls

For D € [0, m1) s1 = A1(D) is the unique solution of equation fi(s1) = D.
ZNGIl = {(51752) 151 = )\1(D1)}

For D € [0, my), s = A2(D) is the unique solution of equation f(s;) = D.
ZNGI2 = {(51,52) 1S = Az(Dz)}

Table: Equilibria.

Components s; and s; of boundary and positive equilibria
E; = (51,)?17 S, 0) = )\.1(D1) S = S{n =+ Sén — 5
E, = (§1,0,§2,)?2) S = S{" S = )\Z(DZ)
Ec=(si,x(,85,%) st =XM(D1) s5=2X(Dr)
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Existence and stability of equilibria

Existence condition

Stability condition (local and global)

Eo
E;
E,

Always exists

sin
s

{

> )\1(D1)

> X\o(D2)

s> Ai(Dy)  and

S{" —+ Sé." > A1(D1) -+ )\2(D2)

"< M(D1) and s}’ < Aa(D2)
S{_n + 57 < )\1(D1) + >\2(D2)
s < Mi(Dy)

Stable if it exists
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The ', and the operating diagram

Eo E 1 E2 EC Color
Io S Red
;| U S Yellow
I, | U S Blue
3| U U S | Green
Z, | U U U S | Green

~ -~ . e LERN

61/121



Proof

So S92 So

S1 0 : 51 0 S1 0 : S1
(si*. s5°) € To (st si) €Ty (s1",55") € T (s",55") € Tg

in
52

0 ] ] S1
(st 58 € T,

0 sin
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Commensalism with inhibition of x, by s

$1 = D (S{n — 51) — fl (51)X1,

x1 = (f(s1)— Di)x,

$2 = D (Sén — 52) + fl (51)X1 — fg (51, SQ)XQ,
x2 = (f(s1,%)— D2) x,

® f1(0) =0 and for s; >0, f{(s1) >0
® f5(s1,0) =0 and for s; > 0,5, > 0 we have

fo(s1,5) >0 and  fia(s1,s2) <0
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ZNGls and equilibria

Table: Break-even concentrations and ZNGls

Break-even concentrations and ZNGls
For D € [0, m1), s1 = A1(D) is the solution of equation fi(s1) = D.
ZNGIl = {(51,52) 151 = A1(D1)}
For s1 > 0 and D € [0, m2(s1)), s2 = A2(s1, D) is the solution of f(s1,s,) = D.
ZNGIL = {(s1,%2) : &2 = \o(s1, Do)}

Table: Equilibria

Components s; and s, of boundary and positive equilibria
E = (§17>_(17 S, 0) 5 = )\.I(Dl) S = S:’ln +. Sén — 5
E2 = (§1, 07 §2,)?2) §1 = S{n §2 = )\2(5{"7 D2)

Ec = (s{,x7,8,x) st =M(D1) s =X(Mi(Dr),Dn)
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Existence an stability of equilibria

Existence condition Stability condition (local and global)
Eo  Always exists si” < A1(D1) and 53" < Ao(s1", D»)
Er s> Ai(Dy) st + 85 < A1(D1) + X2(A1(D1), D2)
E, Sé'" > )\2(5{", Dz) S{" < )\1(D1)
E. { st >M(Dr)  and Stable if it exists

si' 4+ 85" > A1(D1) + X2(A1(D1), D2)

65 /121



The ', and the operating diagram

| EO E1 EQ Ec | Color

Iy | S Red
Z, | U S Yellow
I, | U S Blue
I3 | U U S | Green
Z, | U U U S | Green

M=(D, 51’52) 51' —)\I(Dl} {D51,52 : D1 = (st )}

M2 =1{(D,s{",s") : 8" = Na(s{", D2) } = (D5, sf) Dz = fo(sf", s3') }

r; = {(D, s{",sg") 51 + 5" = M (D1) + X2 (Ai(D1), D2) and si" > >\1 (D)}

=] F

66 /121



S2

S1

e

S1
(sin’ 8%") c 1_1

(81 ,52 )61'3

S2

/

0
in
51

S1
(81 782 61'4
=
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Pure syntrophy

s = D(sf"—s1)— fi(s1,5)xi,
x1 = (fi(s1,s)— Di)x,
H = D(si"—s)+f(s1,9)x — fh(s)x,

X = (f(s2) — D2)x,
® £(0,s) =0 and for s; > 0,5, > 0 we have
fii(s1,52) >0 and fia(s1,5) <0

® £,(0) =0 and for s, > 0, fJ(s2) >0
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ZNGls and equilibria

Table: Break-even concentrations and ZNGls

Break-even concentrations and ZNGls

For s, > 0 and D € [0, mi(s2)), s1 = Ai(s2, D) is the solution of fi(si1,s) =y

ZNGIl = {(51,52) 1S = )\1(527 Dl)}
For D € [0, m2), s2 = X2(D) is the solution of f(s;) = D.
ZNGI2 = {(51,52) LS = AQ(DQ)}

Table: Equilibria

Components s; and s; of boundary and positive equilibria

- - - s1 is the unique solution of - i in =
E = (51,%1,5,0) { fi(si,si" + 58" — 51) = 0 SS=s5"+5 —3
E> = (31,0,5,%) 51 =5y 5 = X(D»)
Ec=(si,x(,5,%) st =M(X(D2), D) s = Xa(D2)
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Existence an stability of equilibria

Existence condition

Stability condition (local)

Eo
E;
E,

Always exists
s

o

{

> Ai(s3, Di)

si" > M(X2(D2), D1)  and
s+ 5" > Ai(A2(D2), D1) + A2(D2)

51" < A", D1) and 5" < A2(D2)
51’ + 5" < Ar(A2(Dz2), D1) + A2(D2)
7> )\2(D2) 5" < )\1()\2(D2)7 Dl)

Stable if it exists
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The ', and the operating diagram

Eo E 1 E2 EC Color
IO S Red
71 U S Yellow
o | U S Blue
;| U U S | Green
I, | U U U S | Green
Is | U U S | Green

M= ( )-51 _)‘1(527D1} {Dsill.n752) D1—f15{",52)}
M2 = (D51752)'52—>\2(D2} {Ds Dy = fy(sh )}

[3= ( ) : Sin + Sé-n = )\1()\2(D2), D1) =+ AQ(DQ) and 52 < )\2(D2)}
[4 = ( ) : Sl.n = )\1()\2(D2), Dl) and Sé.n > AQ(DQ)}
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S2

(si"55") € To

in
Sy

S2

(185" € Ty

S2

S1

S2

///

/

Y,

/

/

/

/
/

’/

7

7
7

/

/

0 s1 ’ 81
(sin, sin) € T, (sin, sin) € Ty
52 o
// /
| /
o
51
(51", 55") € Is

. /
(sin, si) € Ty

s

S1
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Operating diagram (S2)

in

52
E() FE 1 E2 E é E c2 Color
Ty | S Red
| U S Yellow
.| U S Blue
r 3| U U S Green
',|U U U S Green
Is | U U S Green
s | U S S U | Coral
;| S S U | Pink
Is | U S S U |Cyan

1 2 3?1”
Is I3

Figure: The Operating diagram of the system, in the (s, si") operating

plane and D € (0, dg) constant.

DA
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S1
(s1",55") € Lo (st",55") € (s1",55") € Iy
52 } 52 ; 52 |
/ /
/ / /
0 7 51 0 S1 0 7 S1
(i, s5") € I3 (st s5") € Iy (st s5") € Is
52 | 52 52 |
|
| |
/ /
/ /
s1 0 s1 0
(s1", 55" )€ I

(7, 55") € Tg

(1, 5") € Ir

S1
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82

z
S1 0
(1", 85") € Ig
E, E E, E!} E?| Color
o | S Red
7, | U ) Yellow
| U S Blue
s | U U S Green
s | U U U S Green
s | U U S Green
s | U S S U | Coral
I | S S U | Pink
e U S S U Cyan

st
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52

E, E E, E!} E?| Color
o | S Red
7, | U S Yellow
| U S Blue
s | U U S Green
s | U U U S Green
s | U U S Green
s | U S S U | Coral
I: | S ) U | Pink
e U S S U Cyan

52 52
//
s1 0 s1 0

(s1",85") € I

S1
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Asymptotic behaviors

Ey B, E! E?|Color
Red
S Yellow
S Blue
Green

Green

Green
U | Coral
U | Pink
U | Cyan

cwaaccadcond
a

(=]
wwnnnn

Table: Asymptotic behaviors).

Color  Asymptotic behavior Regions
Red  Stability of Eg To
Yellow Stability of E; T
Blue  Stability of E; I
Green Stability of E} I3, 14, Is
Coral  Stability of E; and Ec1 T
Pink  Stability of Ey and E} 17
Cyan  Stability of £, and E} Tg
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B B B B |Coor Bifurcations

Eo

S Red

U S Yellow
U S Blue
U U S Green
U U U s Green
U U s Green
U s S U | Coral
S S U | Pink
U S S U |Cyan

Subset of SOP B

8I0 N 811 EO = El
0Zo N Iy Ec=6E
971 N 0T Ey=E}
07> N I1s E, = Ecl
81.3 N 81'4 EO - E2
024 N OLs Ec=EF
023 N 0Zg E = Eg
95 N Tg Er = E2
816 N 817 EO = El
017 N O1g Eo=E = = = =
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lllustrative example

.§1 = D (S{n — 51) — f1 (51./ 52)X1,

1 = (f(s1,5)— Di)x,

H = D(sf'—s)+fi(s1,5)x1 — h(s1,9)x,
xo = (fh(s1,%)— D2)x,

Table: Growth functions and parameters values

Growth functions and break-even concentrations

mi S _ KID(1+L152)
fi(s1,52) = Ki+s1 1+L152 — Mi(s2, D) = m1—D(1+L;s;)

KoD(1+Los1)
__ _msp — — 2 251
'(2(51’ 52) T Kot+sp 1+L251 )\2(517 D) _ mz—D(l-‘rLle)

Parameters values

mq Kl L1 moy Kz L2 1 a1 (6%) an
4 1 03 3 1 02 08 01 09 0.2
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Operating diagrams with D constant

VA
7

2\4557:(0-

T2 3 4 s 6 7T 8 9

0 §0<>D=1.7<61511n0 50<D—2<5510 6 <D=32<681 j
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in
51

T
51

ith )" constant

82/121



The surfaces ',

E, E, E! E?|Color
Red

w

Yellow

S Blue
Green
Green
Green
U | Coral
U | Pink
U | Cyan

ca

dmaacacccnd
n

wwe v nnn

r1 = ( 1 ,52 ) € SOP : fl(S{:n,Sé:n) = D1
Mo = {(D.s{",sf") € SOP : f(sf", si") = D

M ={(D,s",s") € SOP : si" + si" = s;*(D) + s31(D) and f(si", si") < D»
rs = {(b, 1,52)€SOP:5{”+52 = 5;2(D) + s3*(D) and K(s]",s') < D,
r: = {(D, {",52 ) ESOP i 5" = = st1(D) and fi(si",s)") < Dy
2 ={(D,s" si") € SOP : si" = s{%(D) and fi(s!", si") < Dy

u}
o)
I
i
it
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Sommaire

@ Review of the literature
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Microbial communities (without
self-inhibition)

Commensalism (without self inhibition) Syntrophy (without self inhibition)

@/@ @/@@”

Case (0) Case (12) Case (21) Case (12,21)
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One self inhibition

Commensalism (with one self inhibition)

Case (11) Case (22) Case (11,12) Case (12,22)

Syntrophy (with one self inhibition)

Case (11,21) Case (21,22) Case (11,12,21) Case (12,21,22)
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Two self inhibitions

Commensalism (with two self inhibitions)

Syntrophy (with two self inhibitions)

Case (11,22) Case (11,12,22)

Case (11,21,22) Case (11,12,21,22)
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Commensalism

1 12 Sy D Year Ref.

Monod Monod 0 D 1974 Reilly

M-function ~ M-function 0 D 1981 Stephanopoulos

Monod Monod 0 D + a; 2003 Simeonov and Stoyanov
Monod Monod 0 D 2019 Di and Yang

Monod I-Monod 0 D 2019 Di and Yang
M-function  I-M-function 0 D 2019 Ben Ali

® P.J. Reilly (1974), Stability of commensalistic systems, Biotechnol.
Bioeng. 16: 1373-1392.

® G. Stephanopoulos (1981), The dynamic of commensalism, Biotechnol.
Bioeng. 23 2243-2255.

® |. Simeonov, S. Stoyanov (2003), Modelling and dynamic compensator
control of the anaerobic digestion of organic wastes, Chem. Biochem.
Eng. Q., 17 285-292.

e S. Diand A. Yang (2019) Analysis of productivity and stability of
synthetic microbial communities. J. R. Soc. Interface 16 20180859.

® N. Ben Ali (2020), Analyse mathématique de la stabilité d'une
communauté microbienne synthétique. Mémoire de Master. ENIT, Tunis
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Syntrophy

I 142 Sy D Year Ref.

Monod-I Monod 0 D 1974 Wilkinson et al.
KB1 Monod 0 D 1986 Kreikenbohm and Bohl
M-I-function  M-function 0 D 1994 Burchard
Monod-I Monod 0 D+ a; 2011 Xu et al.
M-I-function  M-function 0 D 2010 El Hajji et al.
M-I-function  |-M-function 0 D 2012 Sari et al.
M-I-function ~ M-function 0 D+ a; 2016 Sari and Harmand
M-I-function ~ M-function >0 D+ a 2018 Daoud et al.
Monod-I Monod 0 D 2019 Di and Yang
Monod-I I-Monod 0 D 2019 Di and Yang

® T. G. Wilkinson, H. H. Topiwala, G. Hamer (1974). Interactions in a

Mixed Bacterial Population Growing on Methane in Continuous Culture.

Biotechnol. Bioeng. 16, 41-59.

® R. Kreikenbohm and E. Bohl (1986), A mathematical model of syntrophic

cocultures in the chemostat, FEMS Microbiol. Ecol., 38 131-140
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References (Syntrophy) continued

A. Burchard (1994), Substrate degradation by a mutualistic association of
two species in the chemostat, J. Math. Bio., 32 465-489.

M. El Hajji, F. Mazenc, J. Harmand (2010), A mathematical study of a
syntrophic relationship of a model of anaerobic digestion process,
Mathematical Biosciences & Engineering, T 641-656.

A. Xu, J. Dolfing, T. Curtis, G. Montague, and E. Martin (2011),
Maintenance affects the stability of a two-tiered microbial ‘food chain'?,
J. Theor. Biol., 276 35-41.

T. Sari, M. El-Hajji, J. Harmand (2012), The mathematical analysis of a
syntrophic relationship between two microbial species in a chemostat,
Math. Biosci. Eng., 9 627-645.

T. Sari and J. Harmand (2016). A model of a syntrophic relationship
between two microbial species in a chemostat including maintenance.
Mathematical Biosciences, 275 1-9.

Y. Daoud, N. Abdellatif, T. Sari, J. Harmand (2018), Steady state
analysis of a syntrophic model: The effect of a new input substrate
concentration, Math. Model. Nat. Phenom., 13 31.

S. Di and A. Yang (2019) Analysis of productivity and stability of
synthetic microbial communities. J. R. Soc. Interface 16 20180859.
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Growth functions

Function Defintion

Monod  wi(S) = g%

Monod-I /J1(51,52) = %ﬁ

I-Monod M2(Sl’ 52) = *?2%—55%2 1+L11$1
m(S1=5/K1)

KB1 11(51,$2) = s iGs,. S~ S2/Ki>0
0 otherwise

M-function (0) =0 and for S >0, p/(S) >0

M-I function u1(0,S2) =0 and, for 51,5 > 0, %(5,—,52) >0, g—‘;;(S,-
I-M function p12(51,0) = 0 and, for 51,5, > 0, 32(S5;,S2) > 0, 32(Si
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Commensalism with self inhibition

1 142 S D Year Ref.

H-function  H-function 0 D 1981 Stephanopoulos
Monod Haldane >0 aD 2001 Bernard et al.
Monod Haldane >0 D 2010 Simeonov and Diop
M-function  H-function 0 D 2010 Sbarciog et al.
M-function  H-function >0 aD 2012 Benyahia et al.
M-function  H-function 0 D 2012 Weedermann
M-function  H-function >0 aD 2018 Bayen and Gajardo
M-function  H-function >0 aD 2021 Sari and Benyahia
M-function  H-function >0 «o;D+a 2022 Sari

® G. Stephanopoulos (1981), The dynamic of commensalism, Biotechnol.
Bioeng. 23 2243-2255.

® Q. Bernard, Z. Hadj-Sadock, D. Dochain, A. Genovesi, J.-P. Steyer
(2001). Dynamical model development and parameter identification for
an anaerobic wastewater treatment process. Biotechnol Bioeng. 75
424-438.
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References (Continued)
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Syntrophy with self inhibition

1 12 Sy D Year Ref.

KB2 I-Monod 0 D 1988 Kreikenbohm and Bohl
HGG H-function 0 D 2014 Harvey et al.

M-I function H function >0 D+ a; 2017 Fekih Salem et al.

M-I function H function >0 «;D+ a; 2020 Fekih Salem et al.

® R. Kreikenbohm, E. Bohl (1988). Bistability in the Chemostat. Ecological
Modelling 43, 287-301.

® E. Harvey and J. Heys and T. Gedeon (2014), Quantifying the effects of
the division of labor in metabolic pathways, J. Theor. Biol., 360 222-242

® R. Fekih-Salem, N. Abdellatif, A. Yahmadi (2017), Effect of inhibition on
a syntrophic relationship model in the anaerobic digestion process,
Proceedings of the 8th conference on Trends in Applied Mathematics in
Tunisia, Algeria, Morocco, 2017, 391-396,

® R. Fekih-Salem, Y. Daoud , N. Abdellatif, T. Sari (2020) A mathematical
model of anaerobic digestion with syntrophic relationship, substrate

inhibition and distinct removal rates SIAM Journal on Applied Dynamical
Systems, 20 1621-1654.

94 /121



Growth functions

Function Defintion

— my 5
Haldane M2(52) = m

mi(S1—5/Ki) f _
KB2 (S, 5) = | Frskssk O S2/k1 >0
0 otherwise

#(0) = 0 and there is an S™ € (0, +00] such that x/(S) > 0if S < 5™
and p/(S) < 0if S > S™ (If S™ = 400 we have an M-function)
M1(51,52) = f(Sl)I(Sg) with f(O) =0 and

for 1 >0, f/(51) >0, for S > 0, //(52) <0

H-function

HHG
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Bioreactors that employ a synthetic microbial community hold potential to
overcome limitations of those based on a single species, which embrace a
higher level of complexity due to the inter-species interactions. In this work,
a number of generic system structures involving two cross-feeding species
and various types of inhibition have been studied, together with two three-
species cases where a third species is introduced to fulfil a specific function.
These cases are represented by mathematical models and inspected through

hifiircation analueic and nimerical cimulation ta reveal how the avatem

97 /121



Base System = our model C1 or (0)

« @

N

\
\

N\
M -
@ -

Figure 1. The base system. (Online version in colour.)

Commensalism (without self inhibition)

Syntrophy (without self inhibition)

;

Case (0) Case (12)

ONOMO
)

Case (12,21)

Case (21
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Single inhibition (Di and Yang)

/ case 1-1 \ / case 1-2 \
S S, Sy S,
X, 3 X, x @ | X,
N 2N /
/ case 1-3 \ / case 1-4 \
Sy S, Sy Sy
X, frmmmm - X, X, s X,
o NG )
Figure 2. Two-species systems with a single inhibition (layer-1 cases). (Online version in colour.)
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/ case 1-1

case 1-3

/ case 1-2 \

case 1-4 \

Figure 2. Two-species systems with a single inhibition (layer-1 cases). (Online version in colour.)

Commensalism (without self inhibition)

Syntrophy (without self inhibition)

5[
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Case (0) Case (12)

OO0

Case (21) Case (12,21)
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case 2-1

Double inhibitions (Di and Yang)

N[
M -

S

case 2-2

X,

case 2-3

M -

~
o -
X, ‘x
&
s

2
1

case 2-4

X,

case 2-5

® m|lo m|lonm

X

M -

case 2-6
1 [
Qx ||« @
Figure 3. Two-species systems with double inhibitions (layer-2 cases). (Online version in colour.)
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Inhibition of x; by x;, with i # j

x1 is inhibited by x, means that

f (S ) mi Sy 1
X =
B Ki+s11+ Loxo

x1 is inhibited by sp and x» means that

f( ) mi Sy 1 1
S1, 5, %) =
11°1, %2, %2 Ki+s11+ Loxo 1+ Mss,

These growth functions are density dependent.
Our theory does not apply.

However, it can be extended (work in progress)
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Self inhibition or not ?

On top of this base system, we construct its variations with
three layers of complexity. In layer 1 (figure 2), four two-species
cases (numbered as cases 1-1 to 1-4) are considered, each of
which contains an inhibition between a chemical and a species
or between the two species. In reality, an inter-species inhibition
may still be mediated by a certain chemical, which is however
not explicitly represented in the system structure. Note that, an
inhibition between S; and X; and that between S, and X, are
not considered, as they will not affect the interactions between
the two species and are therefore not relevant to this study.

In the next step, single inhibitions from layer 1 are combined,
leading to six cases (numbered as cases 2-1 to 2-6), each of which
includes two different inhibitions; these cases are referred as
those of layer 2 (figure 3 and table 2). The layer-2 cases are con-
sidered in order to investigate the compound effects of multiple
inhibitions that may exist in a two-species system.
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One of the conclusions of Di & Yang

reduction in stability. Inhibitions were also shown to be able
to reduce the productive operating window that corresponds
to the coexistence region of the operating space. Complex beha-
viours such as stable oscillation and bi-stability may occur with
certain structural features such as feedback loops, combined
with a suitable range of parameter values. It was also learned
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Operating diagram (C1, C2 and S1
r, I,

she

sS4

T
Ty
I
0 F3 Siln 0 F3 szln 0 Fg s
Model C1 Model C2 Model S1
Ec E1 E» E. | Color
To | S Red
7 | U S Yellow
| U S Blue
s | U U S | Green
s | U U U S | Green
Zs | U U S | Green
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Inhibition of X, by S,

Commensalism (without self inhibition)

Syntrophy (without self inhibition)

i

Case (0) Case (12)

Case (21) Case (12,21)

Commensalism (without inhibition of S on X5)

Syntrophy (with inhibition of S5 on X5)

YL

Case (22) Case (12,22)

1 I«
O ONO)

Case (21,22) Case (12,21,22)
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Commensalism and Inhibition of X5 by 5,

51
X1
)
X2

D (S{n — 51) — fl (51)X1,

(fi (s1) = D1) xa,

D (s — sp) + fi (s1)x1 — o (2)x2,
(f2(s2) — D2) x2,

® f1(0) =0 and for s; >0, f'(s) >0

® f5(0) = 0 and there exists s3" such that, for 0 < s, < s,

f3(s2) > 0 and for s, > s, fj(s2) <0
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Syntrophy and Inhibition of X, by S,

s = D(si"—s1)—f(s1;9)x,

X1 (fi (s1,%) — D1) x,

S D (Sén — 52) +f (517 52)X1 —f (52)X27
X = (f(s2) — D2)x,

® £(0,s) =0 and for s; > 0,5, > 0, f11(s1,52) > 0 and
fia(s1,52) <0

® f5(0) = 0 and there exists s3" such that, for 0 < s, < s,
f3(s2) > 0 and for s, > s, fj(s2) <0
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Break-even concentrations and ZNGls

For s, > 0 and D € [0, mi(s2)), s1 = Ai(s2, D) is the solution of fi(s1,s2) = D.
ZNGIl = {(51,52) 1S = )\1(52, Dl)}
For D € [0, my), s3 = A\3(D) and s = \3(D) are the solutions of f(s;) = D.
INGI; = {(s1,%) : % = M3(D2)}  ZNGI; = {(s1,%) : % = \3(D2) }

—GL&Eg —eEZQ—&Eg
E; L E} E; 3
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(22) and (21,22)

(22) (21,22)
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Existence and stability of equilibria of (22)

Ec E} E?} E  E} E2?]| Color
Iy | GAS Red
Zn | U GAS Blue
I S S u Cyan
I3 U GAS Yellow
Iy u u GAS Green
Zs | U S S U | Pink
Te u U U GAS Green
;| U U S S U | Pink
g | U u u S S U | Pink
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Existence and stability of equilibria of

(21,22)

Ec E} E? E E!} E?| Color
o | S Red
i | U S Blue
S S U Cyan
Iz | U S Yellow
Zy | U u S Green
Zs | U S S U |Pink
e | U U Uu S Green
7 | U U S S U | Pink
s | U U U S S U |Pink
Iy | U U S Green
Zio | S U U S White
i1 | S U u S U | White
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Asymptotic behaviors

Color  Asymptotic behavior Regions
Red  Stability of Eg To
Yellow Stability of E; 13
Blue  Stability of E} T
Green  Stability of E} Za, Tg, T10
Cyan  Stability of £y and E} T
Pink  Stability of £; and E} Is, 17
White  Stability of £y and E}  T19, T11
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Commensalism

s = D(si"—s)—f(s1)x,

x1 = (fi(s1) = D1)x,

= D(si'"—s)+f(s1)x1— f(s1,%)x,
X = (fh(s1,5)— D2)xo,

o Let (s1(t), x1(t), s2(t), x2(t)) be a solution of this system
® Then (si(t), x1(t)) is a solution of the 2D system

$1 = D(s{"—sl)—fl(sl)xl,
x1 = (fi(s1) — D1)xa,

® and (s2(t), x2(t)) is a solution of the non autonomous 2D
system

$ = D (Sé'n — 52) + f (Sl(t))Xl(t) — (Sl(t), 52)X2,
Xo = (f2 (Sl(t),SQ) — DQ)XQ7
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Asymptoticaly autonomous systems

51 = D (S{n — 51) — fl (51)X1,

x1 = (fi(s1) — D1)x,

classical chemostat system. Every solution (except for a set of
initial conditions of measure 0) converges toward an
equilibrium (s;, x{)

The first system

Therefore the second system is asymptotically autonomous
system and converges toward the autonomous system

S = D (Sé'n — 52) + fl (Si‘)Xik — fz (Sik, 52)X2,
x = (fH(sf,s)— D2)xo,

This system is also a classical chemostat system. lts solutions
(except for a set of initial conditions of measure 0) converge
toward an equilibrium (s3, x3).

Use Thieme theory to conclude.
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Reduction to a 2 dimensional system

We assume that D1 = D, = D
The system becomes

s = D(s"—s1)— fi(s1,%)x,

xi = (fh(s1,%)— D)x,

= D(s'—s)+fi(s1,s)x1 — f(s1,52)x,
x = (f(s1,9)— D)xo,

We use the variables (z1, z2, x1, x2), where z; and z, are
defined by

z1 =851+ X1, 2Z2=5 —X1+ Xo.

The system becomes

x1 = (f(z1—x1,2+x1 —x2) — D) xq,
o = (h(z1—x,22+x —x) — D)x,
21 = D(Sin *21),
22 = D(Sé.n—ZQ),
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Since z1 = D (s]" — z1) and 2, = D (s’ — ), we have

21(t) = 5" + (21(0) — s{")e” ", 2(t) = 53" + (22(0) — 3" )e "

x1(t) and xx(t) are the solutions of the non autonomous 2D
system

X1 = (fl (Zl(t) — Xl,ZQ(t) + X1 — X2) — D) X1,
Xo = (fg (Zl(t) *Xl,Zg(t) + x1 — X2) — D) X2

This is an asymptotically autonomous system, whose limiting
system is

5= (A (s~ s+ — %) — D),
Yo = (h(s{"—x1,8" +x1 —x) —D)x

=

Thanks to Thieme's results theory, the asymptotic behaviour
of the solutions of the reduced model is informative for the
complete system.
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Thank you for your attention
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